STUDY DESIGNS FOR EVALUATING EFFECTIVENESS OF AUDIT AND FEEDBACK

International Audit and Feedback Summit
Amsterdam May 23, 2019

BEATRIZ GOULAO
JEREMY GRIMSHAW
CRAIG RAMSAY

Health Services Research Unit, University of Aberdeen
Ottawa Hospital Research Institute
1. Introduction – 5 min
2. Case study: RAPiD – 5 min
3. Considerations in choosing a study design – 10 min
 Audience participation 10 min
4. Non-randomized designs – 10 min
 Audience participation 10 min
5. Randomized designs – 20 min
 Audience participation 10 min
6. Case study: RAPiD – 5 min
7. Future directions and wrap up – 5 min
This workshop is intended to be interactive

We will introduce the RAPiD study at the beginning of the workshop

As we progress through the workshop, we will pause several times to allow you to discuss the material, in particular, to discuss how to design an evaluation of the RAPiD intervention

We will ask 1-2 tables to report back on their discussions

At the end of the workshop, we will reveal the actual study design that was used
1. INTRODUCTION

CONTEXT

- **Setting:**
 - A&F being provided “in the real world”

- **Interventions:**
 - Embedded into existing QI programmes
 - Complex (multiple interacting components)
 - Delivered at the level of the provider or site (“cluster”)

- **Outcomes:**
 - Observed on multiple individuals (patients) per cluster
 - Usually obtained from routinely collected sources
PURPOSE OF EVALUATION

- Program evaluation
 - Addressing local question, did our program appear to achieve our aims

- Research evaluation
 - Addressing generalizable question, does audit and feedback work (it does, stop asking this question), how, when and why does audit and feedback work, how can we optimize audit and feedback within specific settings.
 - Research evaluation will (almost always) also address the local question

- Implications for design choices
 - May need less confidence about causality when undertaking program evaluation
DIFFERENT TYPES OF QUESTIONS

0. Is there an association between providing feedback and prescription rates?

1. Is there a causal relationship between providing feedback and prescription rates?

2. Can we refine the type of feedback that produces the largest effect in prescription rates?

3. Can we generalise the results over varied health care professionals and settings?
2. CASE STUDY: THE RAPID STUDY

An Audit and Feedback Intervention for Reducing Antibiotic Prescribing in General Dental Practice: The RAPiD

Paula Elouafkaoui¹,², Linda Young¹*, Rumana Newlands³, Elidith M. Duncan³, Andrew Elders⁴, Jan E. Clarkson¹,², Craig R. Ramsay³, Translation Research in a Dental Setting (TRiaDS) Research Methodology Group⁵

¹ NHS Education for Scotland (NES), Dundee Dental Education Centre, Frankland Building, Dundee, United Kingdom, ² Dental Health Services Research Unit (DHSRU), University of Dundee, Park Place, Dundee, United Kingdom, ³ Health Services Research Unit (HSRU), University of Aberdeen, Health Sciences Building, Foresterhill, Aberdeen, United Kingdom, ⁴ NMHP Research Unit, Glasgow Caledonian University, Cowcaddens Road, Glasgow, United Kingdom

*Membership of the Translation Research in a Dental Setting (TRiaDS) Research Methodology Group is provided in the Acknowledgments.

Dental healthcare mostly provided via public insurance (National Health Service, NHS) – €750 million/year

1000 NHS primary care dental practices

3,200 dentists

The RAPiD study aimed to assess the impact of individualised audit and feedback (A&F) interventions on dentists’ antibiotic prescribing rates

May 2013: Launched an A&F intervention

Routine prescribing data are updated on a monthly basis
RAPID A&F INTERVENTION

• Graphical display of current prescribing practice, regional health board prescribing data and a written behavior change message

Graphical display of antibiotic prescribing rate with data points for April 2016 to February 2017

Your prescribing rate is your monthly number of antibiotic items dispensed multiplied by 100 and divided by the average monthly number of claims made. Your monthly number of antibiotic items dispensed multiplied by 100 and divided by the average monthly number of claims made on your ordinary list at this practice between April 2016 and March 2017 between April 2016 and March 2016 between April 2016 and March 2017 between April 2016 and March 2017. The health board rate is the overall ordinary list prescribing rate for current dentists in non-salaried practices in NHS Lothian, non-salaried practices in NHS Lothian, non-salaried practices in NHS Lothian, non-salaried practices in NHS Lothian. (Source: ISD Scotland. Data as at March 2017)

Prescribing courses of antibiotic treatment can encourage the development of antimicrobial resistance and therefore must be kept to a minimum.
You are going to plan an evaluation of the effectiveness of the RAPiD intervention.

- Discuss what you see as the key considerations in choosing a study design with respect to the RAPiD evaluation
KEY CONSIDERATIONS IN CHOOSING A STUDY DESIGN

- Can the delivery of the intervention be manipulated (i.e., can we use randomization)?
- How many independent providers/sites are available?
- Is there a requirement that the intervention be introduced at all sites (or can it be withheld from some sites)?
- Is it logistically feasible to introduce the intervention simultaneously across all sites?
- Are pre-intervention outcome data available to use in the evaluation?
To evaluate effectiveness of an intervention, we need a comparator

Three possible choices:

- A&F versus no A&F (not ideal)
- Usual A&F versus new A&F
- A&F + something else versus A&F alone
TWO MAIN TYPES OF STUDY DESIGNS

- **RCTs**
 - Minimizing bias (internal validity)
 - Is the observed improvement actually caused by the A&F?
 - Maximizing generalizability (external validity)
 - Will the A&F also work in other sites/providers and other patients?

- **Non-randomized**
 - Only feasible option?
5. NON-RANDOMIZED DESIGNS

- Major study designs:
 1. Uncontrolled before and after
 2. Controlled before and after
 3. Interrupted time series (ITS)
 4. Controlled interrupted time series
 5. Multiple baseline interrupted time series
Non-Randomized Designs

1. **Uncontrolled before and after study**
 - **Months**
 - Site
 - Site 2
 - Months 12
 - Months 24

2. **Controlled before and after study**
 - **Months**
 - Site 1
 - Site 2
 - Months 12
 - Months 24

3. **Interrupted Time Series**
 - **Months**
 - Site
 - Site 1
 - Site 2
 - Months 1
 - Months 24

4. **Controlled Interrupted Time Series**
 - **Months**
 - Site 1
 - Site 2
 - Months 1
 - Months 24

Try to avoid...
1. UNCONTROLLED BEFORE AND AFTER

- Major threat to validity
1. UNCONTROLLED BEFORE AND AFTER

- Major threat to validity

![Graph showing test use proportion over months with apparent effect completely confounded with the secular trend.](#)
3. INTERRUPTED TIME SERIES

- Called "interrupted" time series because we look for an “interruption” in the line at the time of the intervention
- Look for either an immediate change or gradual change
- Can project what outcomes would have been had intervention not been introduced
Example of an ITS Study

Example of an ITS Study

Autocorrelation

Incidence of infective endocarditis

Month, year
Example of an ITS Study

Outliers
Example of an ITS Study

Additional Interruptions
3. INTERRUPTED TIME SERIES

- Sample size requirements:
 - Single site or multiple sites
 - Need relatively large numbers of observations per measurement (at least 50)
 - Need at least 8-12 measurement intervals pre and post

- Generally more difficult to conduct power calculations
3. INTERRUPTED TIME SERIES

Advantages:

• Can be used to evaluate intervention introduced at a single site or at the same time across the population
• Easy to use with routinely collected data over many time periods
• Can rule out pre-existing (secular) trends as an alternative explanation
• Clear graphical presentation of results, easy to explain
• Only need aggregate data

Disadvantages:

• Cannot rule out possibility that another change occurred at the same time as the intervention
• Long study duration
• Difficult to interpret when there are few events per time period
• Difficult to interpret when data collection methods change over time
• Difficult to separate independent effects of different components of an intervention implemented close together in time
4. CONTROLLED INTERRUPTED TIME SERIES

- Two major threats to validity of interrupted time series:
 - Possibility that another change, occurring at the same time, is an alternative explanation for the observed changes
 - Major shift in the characteristics of the population which coincided with the intervention

- Can be strengthened by adding one or more controls
 - External control: adding an interrupted time-series analysis for a comparison site which did not implement the intervention
 - Internal control: adding an interrupted time series analysis for an outcome not targeted by the intervention

- Compare changes in the control with changes in the intervention series
COMMON METHODOLOGICAL PROBLEM: BASELINE IMBALANCE

Outcome

T

C

Intervention

T

C

Time
5. MULTIPLE BASELINE INTERRUPTED TIME SERIES

- Multiple intervention sites with staggered implementation of intervention
- Look for an interruption at a particular time where intervention was introduced, accompanied by absence of an interruption at other sites
- Conduct an ITS analysis in each and pool the results (where possible)
- Looks like a stepped wedge design (but too few sites for stepped wedge)
Figure 1. Hypothetical example of a multiple baseline design used to assess behavior change following an intervention in four communities.
5. MULTIPLE BASELINE INTERRUPTED TIME SERIES

 Advantages:

• Can be used to evaluate intervention introduced at a small number of sites (too few for a randomized design)

• The greater the number of sites showing a change corresponding to the time at which the intervention was introduced, the more confident one can be that the intervention produced the observed changes (as opposed to some other influences)

 Disadvantages:

• Can increase the overall study duration

• Can be difficult to interpret when sites are heterogeneous

• Works best when different sites operate independently of each other (no contamination)

• Can be difficult to interpret when interventions are implemented close together in time

• More difficult to produce a single estimate of intervention effect
How should we evaluate the effectiveness of the RAPiD implementation?

- Consider the 5 different non-randomized study designs with respect to the RAPiD evaluation
- Discuss possible designs to evaluate the RAPiD intervention
RANDOMISED CONTROLLED TRIALS
UNIT OF RANDOMIZATION

Two types of randomized controlled trials:

- Individual randomized trial
- Cluster randomized trial (CRT)

Individual randomization generally preferable (but not possible for site- or provider-level interventions such as A&F)
CLUSTER RANDOMISED TRIAL

Practice 1
A+F

Practice 2
A+F with message

Practice 3
A+F

Practice 4
A+F with message
CLUSTER RANDOMISED TRIAL

Randomisation at the practice level

Analysis at the health professional level
CLUSTER RANDOMISED TRIAL

Practice 1

Practice 2
Practice 1
CLUSTER RANDOMISED TRIAL

Practice 2
INTRACLUSTER CORRELATION

Independent members

Total dependence
Cluster Randomised Trial

- Downsides?
 - We usually need to recruit more participants in a cluster randomised trial

- So.... Why are we using it?
Increasing cluster size

Decreasing intracluster correlation
Main cluster randomized trial (CRT) designs:

1. Two arm parallel design
2. Multi-arm parallel design
3. Parallel arm before and after design
4. Repeated measures parallel arm design
5. Stepped wedge design
6. Factorial trial design
Parallel Designs

Two arms

<table>
<thead>
<tr>
<th>Sites</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Does it work?

Multiple arms

<table>
<thead>
<tr>
<th>Sites</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Which version works the best?
PARALLEL MULTI-ARM DESIGNS

Advantages
• Allows comparison of multiple interventions or levels of intervention under similar circumstances

Disadvantages
• Need more sites to achieve the same power (due to use of multiple arms)
• Small differences between arms implies larger sample sizes required
• Analysis more complicated (need to account for multiple comparisons)
BEFORE AND AFTER PARALLEL ARM

<table>
<thead>
<tr>
<th>Sites</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Randomization

Add a pre-intervention measurement in both arms
BEFORE AND AFTER PARALLEL ARM

Advantages
- Can assess whether sites in different arms are comparable before intervention
- Utilizing the pre-intervention data in analysis can increase power
- Can assess whether sites who are dropped from the analysis (e.g., due to closures, mergers, attrition) are similar to those who remain

Disadvantages:
- More complex analysis
- Different methods of analysis are possible which may give different answers
- May extend the total study duration if no routine data available
STEPPED WEDGE

- All sites start in control and end in intervention condition
- Sites cross to intervention sequentially and in random order
- Outcomes are assessed repeatedly in each site over time
STEPPED WEDGE: ADVANTAGES

- Uses randomization – better than implementing the intervention at all sites without any randomization
- May increase power over parallel arm designs
- Delivery of the intervention can be spread out over time (e.g., by having only one site or a small number of sites cross over each time)
STEPPED WEDGE: DISADVANTAGES

- All sites must be ready to implement intervention at any time
- Can increase the total duration of the study (increase risk that external events may influence outcomes)
- Some sites have to wait a long time before receiving intervention
- Heavy data collection burden (unless using routinely collected data)
- More complex to analyze and interpret results (can be difficult to separate the effect of the intervention from the effect of secular trends)
2x2 factorial design

- **A and B**
- **A only**
- **B only**
- **Neither A nor B**

Randomize B

Randomize A

Not B

Not A
INTERACTION
INTERACTION

This Photo by Unknown Author is licensed under CC BY-SA
FACTORIAL DESIGN: NEXUS TRIAL

- **2x2 factorial design**

<table>
<thead>
<tr>
<th>Educational message</th>
<th>Randomize</th>
<th>A&F</th>
<th>Not A&F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message + A&F</td>
<td>A&F only</td>
<td>Message only</td>
<td></td>
</tr>
<tr>
<td>Message only</td>
<td>A&F only</td>
<td>Neither</td>
<td></td>
</tr>
<tr>
<td>A&F only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcome: Number of radiograph requests per 1000 patients per year
This Photo by Unknown Author is licensed under CC BY-SA-NC
NO INTERACTION

This Photo by Unknown Author is licensed under CC BY-SA-NC
6. FACTORIAL DESIGNS

Advantages

• Multiple interventions tested in one trial (smaller sample size than if two separate trials)

• Allows examining possibility of interaction effects

• More participants exposed to potentially beneficial intervention

Disadvantages

• More complicated to analyze (must pre-specify whether pooled or four-arm comparison)

• Very difficult to guarantee no interaction took place (because usually there is insufficient power), so results can be difficult to interpret
How should we evaluate the effectiveness of the RAPiD implementation?

- Consider the different randomized designs with respect to the RAPiD evaluation
- Discuss possible randomized designs to evaluate the RAPiD intervention
RAPID TRIAL: RANDOMISED GROUP OPTIONS
Prescribing courses of antibiotic treatment can encourage the development of antimicrobial resistance and therefore must be kept to a minimum.

As a first step in the treatment of bacterial infections, use local measures. For example, drain pus if present in dental abscesses by extraction of the tooth or through root canals, and attempt to drain any soft-tissue pus by incision.

This should be the first step even if patients request antibiotics and even when time is short. Antibiotics are appropriate for oral infections where there is evidence of spreading infection, systemic involvement or persistent swelling despite local treatment.

Use antibiotics in conjunction with, and not as an alternative to, local measures.

If you would like to discuss any part of this feedback please contact: Dr Paula Elowafi-Scott, Tel: 01362 740516, e-mail: TRaaS@nes.scot.nhs.uk.
RESULTS

- At follow-up, the antibiotic prescribing rate of dentists who received individualised feedback was 5.7% lower than the antibiotic prescribing rate of dentists who did not receive individualised feedback.

- Feedback that included a written message synthesising and reiterating national guidance recommendations had the greatest effect.
7. FUTURE DIRECTIONS

No more ‘business as usual’ with audit and feedback interventions: towards an agenda for a reinvigorated intervention

Noah M Ivers*, Anne Sales*, Heather Colquhoun†, Susan Michie*, Robbie Foy*, Jill J Francis* and Jeremy M Grimshaw†

Abstract

Background: Audit and feedback interventions in healthcare have been found to be effective, but there has been little progress with respect to understanding their mechanisms of action or identifying their key ‘active ingredients.’ Discussion: Given the increasing use of audit and feedback to improve quality of care, it is imperative to focus further research on understanding how and when it works best. In this paper, we argue that continuing the ‘business as usual’ approach to evaluating two-arm trials of audit and feedback interventions against usual care for common problems and settings is unlikely to contribute new generalizable findings. Future audit and feedback trials should incorporate evidence- and theory-based best practices, and address known gaps in the literature.

Summary: We offer an agenda for high-priority research topics for implementation researchers that focuses on reviewing best practices for designing audit and feedback interventions to optimize effectiveness.

Keywords: Audit and feedback, Synthesis, Best practice, Implementation, Optimization

Background

Audit and feedback (A&F) involves providing a recipient with a summary of their performance over a specified period of time and is a common strategy to promote the implementation of evidence-based practices. A&F is used widely in healthcare by a range of stakeholders, including research funders and health system payers, delivery organizations, professional groups and researchers, to monitor and change health professionals’ behaviour, both to increase accountability and to improve quality of care. A&F is an improvement over self-assessment [1] or self-monitoring [2] as it can provide objective data regarding discrepancies between current practice and target performance, as well as comparisons of performance to other health professionals. The recognition of suboptimal performance can act as a cue for action, encouraging those who are both motivated and capable to take action to reduce the discrepancy.

The effectiveness of A&F has been evaluated in the third update of a Cochrane review, which included 140 randomized trials of A&F conducted across many clinical conditions and settings around the world. The review found that A&F leads to a median 4.3% absolute improvement (interquartile range 0.5% to 16%) in provider compliance with desired practice [3]. One-quarter of A&F interventions had a relatively large, positive effect on quality of care, while another quarter had a negative or null effect. The challenge of identifying factors that differentiate more and less successful A&F interventions is exacerbated by poor reporting of both intervention components and contextual factors in the literature [4]. Furthermore, most A&F interventions tested in RCTs are designed without explicitly building on previous research or extant theory [5,6]. As a result, there has been little progress with respect to identifying the key ingredients for a successful A&F intervention or understanding the mechanisms of action of effective A&F interventions.
Reduction of research waste with Implementation laboratories

The recent Evidence Implementation (REDING) campaign has encouraged researchers to examine how they work and make efforts to reduce waste and maximize efficiency. Research waste is undermining efforts to improve the effectiveness of health systems. A consistent finding in health services research is inappropriate variation in care and evidence-practice gaps. Implementation science—the study of methods to promote the systematic uptake of clinical research findings and other evidence-based practices into routine practice—can inform health systems on how to visibly improve care and outcomes. However, the potential for implementation science to improve the effectiveness of health systems will not be realised until research waste in the field is systematically addressed.

A solid evidence base shows the effectiveness of common implementation strategies—e.g., audit and feedback, ‘point-of-care reminders’, ‘educational meetings’, and education outreach—but with substantial unexplained heterogeneity. Yet many current studies that evaluate implementation strategies against control create research waste because they do not build upon the current evidence base or address the key questions to substantiate the field. For example, for more than a decade we have known that audit and feedback is an effective way to improve care, but researchers continue to undertake trials of audit and feedback versus usual care, testing whether a particular version of audit and feedback can work in a particular setting and for a particular purpose. Such evaluations rarely incorporate relevant theory or best practices in the design and delivery of the intervention and do not address the question of how to optimise the effectiveness of audit and feedback. As a result, there is insufficient evidence on how best to design a new audit and feedback intervention; the same is true for many other implementation strategies. Such failures represent substantial waste of scarce implementation research resources and provide little evidence-practice gaps that incur individual and societal harm.

Health systems have a need for generalisable evidence about how to achieve the greatest possible impact with their quality improvement initiatives. Implementation intervention developers must make many decisions about content, format, and delivery of their interventions; even small modifications in these areas could influence the effectiveness of the intervention. Since the question of whether many common implementation strategies can work has been answered, the time has come for a shift to a comparative effectiveness model for implementation research. A head-to-head trial that tests different ways of designing and delivering implementation strategies is needed to provide the evidence base for health system decision makers. Direct comparisons of implementation interventions will more efficiently move the field forward than the current approach involving corollary evidence from hardly small trials for indirect analyses in systematic reviews. However, the required sample sizes for such research are difficult to achieve unless the research is embedded within existing large-scale initiatives.

A promising solution is to develop implementation infrastructures that involve close collaboration between health systems delivering implementation strategies at scale and research teams. Implementation laboratories provide an opportunity to lockdown the field by ensuring that scholars meet both applied and scientific goals of understanding what works, better and why. Such research can achieve health systems’ priorities and produce generalisable knowledge about factors—contextual,
IMPLEMENTATION LABORATORIES TO OPTIMISE AUDIT AND FEEDBACK

Baseline A&F occurring in health care system

Trial 1: a vs. b; b is better and becomes new standard
 - A&F 'a'
 - A&F 'b'

Trial 2: b vs. c; c is no better and more costly; b remains standard
 - A&F 'b'
 - A&F 'c'

Trial 3: b vs. d; d is better and becomes new standard; etc...
 - A&F 'b'
 - A&F 'd'
IMPLEMENTATION LABORATORIES TO OPTIMISE
AUDIT AND FEEDBACK

- Benefits for health system – learning organisation; demonstrable improvements in its quality improvement activities; linkages to academic experts

- Benefits for implementation science – ability to test important (but potentially subtle) variations in audit and feedback that may be important effect modifiers
Many possible study designs that have strengths and weaknesses

Choice of a particular design depends on research question and logistical considerations

Generally, prefer a cluster randomized design

Need special expertise to design and analyse appropriately
THANK YOU FOR LISTENING!

BEATRIZ GOULAO
JEREMY GRIMSHAW
CRAIG RAMSAY

Health Services Research Unit, University of Aberdeen
Ottawa Hospital Research Institute