Location-Specific Cost Effectiveness of Public Access Defibrillation

SAEM, San Francisco 2006

Ontario Prehospital Advanced Life Support Study

VJ De Maio D Coyle IG Stiell K O'Grady C Vaillancourt L Nesbitt GA Wells

University of North Carolina Ottawa Health Research Institute University of Ottawa

Canadian Association of Emergency Physicians Canadian Health Services Research Foundation Medtronic Physio-Control

Public Access Defibrillation (PAD)

- The effectiveness of rapid defibrillation for cardiac arrest is undisputed
- Rationale for PAD: ↑ availability of AEDs
 → faster defib times → ↑ survival
- Little research guiding optimal placement of AEDs

PAD Considerations

- 3-minute response time interval
- Multiple AEDs may be necessary per site
- Patient, system and clinical factors affect likelihood of an individual cardiac arrest being amenable to defibrillatory shock
- Widespread PAD potentially expensive, divert attention and resources from other programs

What is the cost-effectiveness of PAD when added to existing EMS? In which specific locations would it be cost-effective to install AEDs?

To compare the incremental cost-effectiveness of the addition of a PAD program to the standard EMS response for a number of public location categories

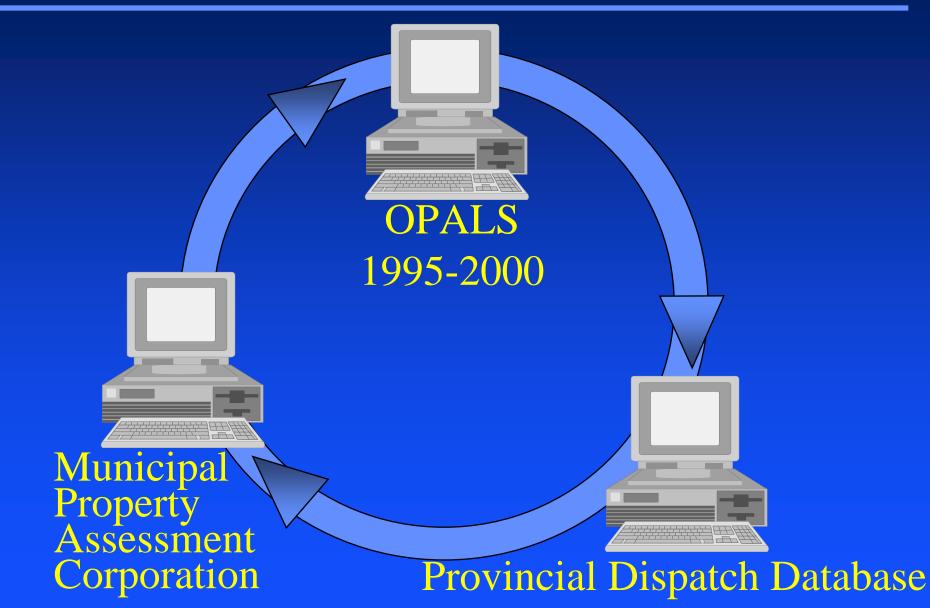
OPALS Study

- Prospective before-after clinical trial
- 10 years, 20 Ontario study communities
- Studied impact of early defib/ALS on cardiac arrest survival, neuro outcomes, quality of life
- Phase II: EMS and firefighter rapid AED
- Phase III: Full ALS
- Utstein style

Patients

All adults suffering a prehospital cardiac arrest of presumed cardiac etiology prior to EMS arrival

Exclusions:


- < 16 years
- Obvious deaths as per Ambulance Act
- Trauma victims
- Other non-cardiac etiology

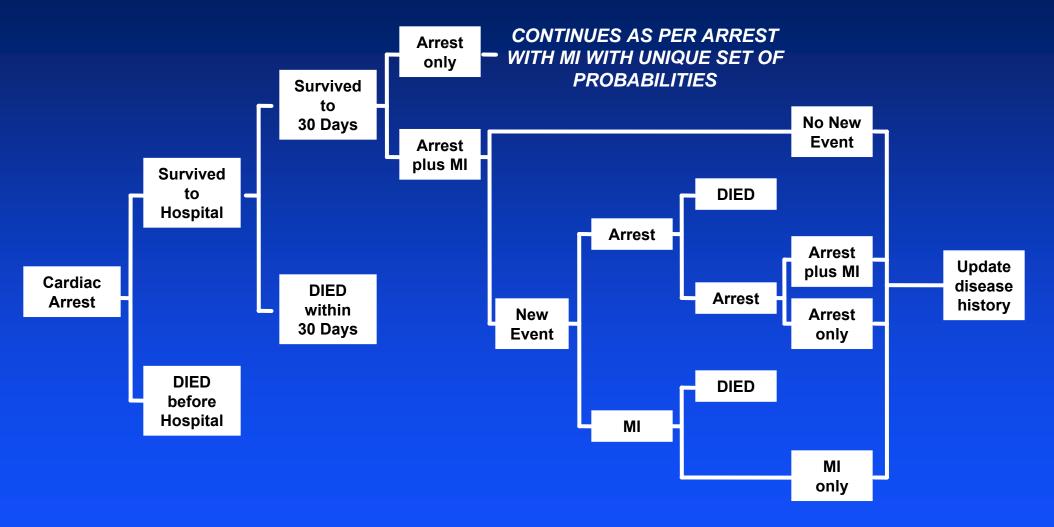
Economic Evaluation

 Compare the total costs and life expectancy of treating cardiac arrest patients with and without an on-site automated electronic defibrillator (AED)

Data Collection

Data Collection

- A priori, property type codes grouped into 18 location categories
- Roll provided total number of sites, per location type, within the study boundary


Primary Outcome

- Incremental Cost Effectiveness Ratio
- The relative mean dollar cost of PAD in each location category per additional quality-adjusted life year (QALY).
- $ICER=(Cost_i Cost_c) / (QALY_i QALY_c)$
- i.e., the additional cost per life year gained

Decision Analysis Model

- Estimated life expectancy and treatment costs of patients by survival status, gender, age at cardiac arrest.
- Adapted data within Weinstein model for survival estimates and disease progression
- Future life expectancy and costs discounted at a rate of 5%.
- Monte Carlo simulation estimated the uncertainty surrounding the ICERs.

Design of Decision Model

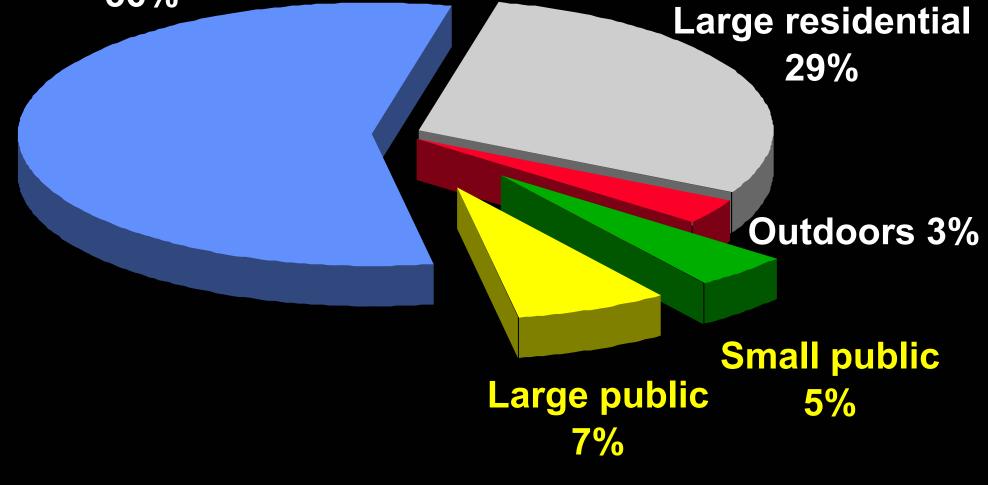
FIRST 30 DAYS AFTER CARDIAC ARREST

FOLLOWING 11 MONTHS AND SUBSEQUENT YEARS

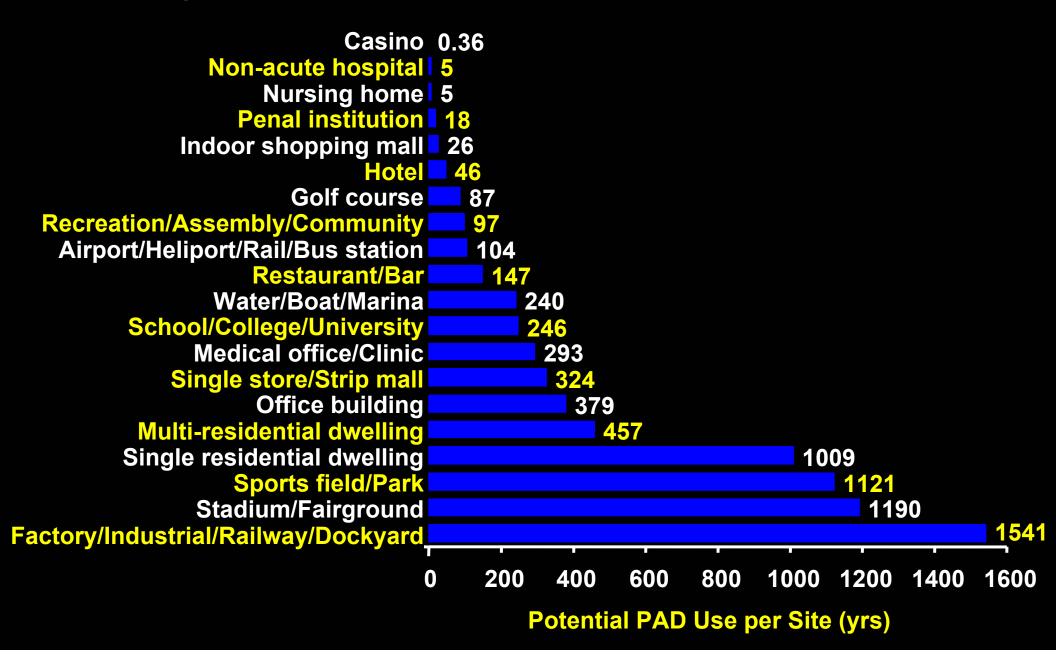
Input Data

- Average n of cardiac arrests/yr (OPALS)
- Proportion of patients who die at scene, in hospital and survive to discharge without an on-site AED by gender, age (OPALS)
- Survival benefit from access to on-site AED in ≤ 3 min (OR = 3.0, 95%CI = 2.3-4.0)
- Annual cost of AED materials, training (5-yr amortization = \$1319.01/yr)
- Resource utilization costs were based on a representative Canadian sample with incident coronary heart disease

Patient Characteristics (N=7707) 69 Age Male 67% 49% **Bystander Witnessed** Initial Rhythm: **VF or VT** 37% PEA 21% 42% Asystole Survival 4.0%

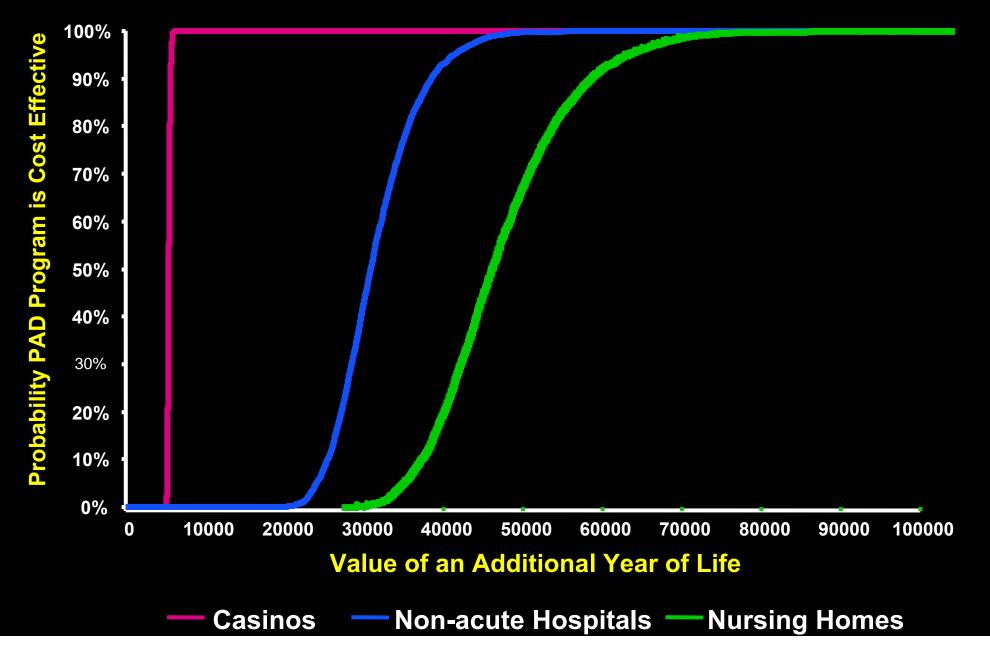

EMS Characteristics (N=7707)

Bystander CPR	16%
Fire/police CPR	39%
PAD response	0.2%
Fire first	49%
Defibrillation	43%
Defibrillation response interval:	
Mean (min)	5.4
Response <u><</u> 8 min	91%


OPALS Cardiac Arrest Locations (N=7707)

Small residential

56%


Average Years Between PAD Use (per Site)

<u>Location</u>	<u>Arrests</u>	<u>Sites</u>	<u>Arrest/Site/Yr</u>	<u>ICER</u>
Casino	28	2	2 2.800	\$542
Non-acute hospital	42	42	2 0.200	\$30750
Nursing home	457	460	0.199	\$45926
Indoor shopping mall	77	394	0.039	\$67690
Penal institution	6	21	0.057	\$128783
Hotel	65	604	0.022	\$143530
Golf course	9	156	6 0.012	\$205990
Recreation/Assembly/Communi	ity 165	3206	6 0.010	\$205407
Restaurant/Bar	48	141(0.007	\$347954
Airport/Heliport/Rail/Bus station	ר 4	83	3 0.010	\$368608
Water/Boat/Marina	5	240	0.004	\$478647
School/College/University	36	1770	0.004	\$598210
Single store/Strip mall	231	14956	6 0.003	\$925784
Medical office/Clinic	41	2399	0.003	\$955614
Office building	96	7276	6 0.003	\$990511
Stadium/Fairground	1	238	3 0.001 \$	1910193
Sports field/Park	14	3139	9 0.001 <mark>\$</mark>	4104539
Factory/Industrial/Railway/Dock	ks 56	17261	l 0.001 <mark>\$</mark>	4323180

Location	Probability Cost Effective	# AEDs Cost Effective
Casino	100%	54.8
Non-acute hospital	99%	1.7
Nursing home	67%	1.1
Indoor shopping mall	2%	<1
Penal institution	0%	<1
Hotel	0%	<1
Golf course	0%	<1
Recreation/Assembly/Community	0%	<1
Restaurant/Bar	0%	<1
Airport/Heliport/Rail/Bus station	0%	<1
Water/Boat/Marina	0%	<1
School/College/University	0%	<1
Single store/Strip mall	0%	<1
Medical office/Clinic	0%	<1
Office building	0%	<1
Stadium/Fairground	0%	<1
Sports field/Park	0%	<1
Factory/Industrial/Railway/Docks	0%	<1

Cost Effectiveness Acceptability Curves

Limitations

- No large metropolitan centers (>1 million) in our population
- Few large sporting venues in this Canadian study region
- Canadian costs
- Assumptions of economic analysis
- Some would argue for willingness to pay threshold greater than \$50,000/life year gained

Conclusions

- Only 3 locations where PAD considered costeffective based on willingness to pay \$50K/life year gained
- Does not appear cost-effective to install AEDs in any of the other 16 locations
- No convincing evidence to support widespread implementation of PAD

Conclusions cont'd...

 EMS and public health directors should consider methods for improving survival for ALL cardiac arrest patients

(e.g., improving citizen CPR, optimizing the traditional EMS response, targeted responder programs)

