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A Dirty Dozen: Twelve P-Value Misconceptions

Steven Goodman

The P value is a measure of statistical evidence that appears in virtually all medical
research papers. Its interpretation is made extraordinarily difficult because it is not part of
any formal system of statistical inference. As a result, the P value’s inferential meaning is
widely and often wildly misconstrued, a fact that has been pointed out in innumerable
papers and books appearing since at least the 1940s. This commentary reviews a dozen of
these common misinterpretations and explains why each is wrong. It also reviews the
possible consequences of these improper understandings or representations of its mean-
ing. Finally, it contrasts the P value with its Bayesian counterpart, the Bayes’ factor, which
has virtually all of the desirable properties of an evidential measure that the P value lacks,
most notably interpretability. The most serious consequence of this array of P-value
misconceptions is the false belief that the probability of a conclusion being in error can be
calculated from the data in a single experiment without reference to external evidence or
the plausibility of the underlying mechanism.
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he P value is probably the most ubiquitous and at the

same time, misunderstood, misinterpreted, and occa-
sionally miscalculated index!? in all of biomedical research.
In a recent survey of medical residents published in JAMA,
88% expressed fair to complete confidence in interpreting P
values, yet only 62% of these could answer an elementary
P-value interpretation question correctly.> However, it is not
just those statistics that testify to the difficulty in interpreting
P values. In an exquisite irony, none of the answers offered
for the P-value question was correct, as is explained later in
this chapter.

Writing about P values seems barely to make a dent in the
mountain of misconceptions; articles have appeared in the
biomedical literature for at least 70 years*!®> warning re-
searchers of the interpretive P-value minefield, yet these les-
sons appear to be either unread, ignored, not believed, or
forgotten as each new wave of researchers is introduced to the
brave new technical lexicon of medical research.

It is not the fault of researchers that the P value is difficult
to interpret correctly. The man who introduced it as a formal
research tool, the statistician and geneticist R.A. Fisher, could
not explain exactly its inferential meaning. He proposed a
rather informal system that could be used, but he never could
describe straightforwardly what it meant from an inferential
standpoint. In Fisher’s system, the P value was to be used as

Departments of Oncology, Epidemiology, and Biostatistics, Johns Hopkins
Schools of Medicine and Public Health, Baltimore, MD.

Address correspondence to Steven Goodman, MD, MHS, PhD, 550 N Broad-
way, Suite 1103, Baltimore, MD, 21205. E-mail: Sgoodman@jhmi.edu

0037-1963/08/$-see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1053/j.seminhematol.2008.04.003

a rough numerical guide of the strength of evidence against
the null hypothesis. There was no mention of “error rates” or
hypothesis “rejection”; it was meant to be an evidential tool,
to be used flexibly within the context of a given problem.!¢

Fisher proposed the use of the term “significant” to be
attached to small P values, and the choice of that particular
word was quite deliberate. The meaning he intended was
quite close to that word’s common language interpretation—
something worthy of notice. In his enormously influential
1926 text, Statistical Methods for Research Workers, the first
modern statistical handbook that guided generations of bio-
medical investigators, he said:

Personally, the writer prefers to set a low standard of
significance at the 5 percent point . . . . A scientific fact
should be regarded as experimentally established only if
a properly designed experiment rarely fails to give this
level of significance.’”

In other words, the operational meaning of a P value less
than .05 was merely that one should repeat the experiment. If
subsequent studies also yielded significant P values, one
could conclude that the observed effects were unlikely to be
the result of chance alone. So “significance” is merely that:
worthy of attention in the form of meriting more experimen-
tation, but not proof in itself.

The P value story, as nuanced as it was at its outset, got
incomparably more complicated with the introduction of the
machinery of “hypothesis testing,” the mainstay of current
practice. Hypothesis testing involves a null and alternative
hypothesis, “accepting and rejecting” hypotheses, type I and
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Figure 1 Graphical depiction of the definition of a (one-sided) P
value. The curve represents the probability of every observed out-
come under the null hypothesis. The P value is the probability of the
observed outcome (x) plus all “more extreme” outcomes, repre-
sented by the shaded “tail area.”

»

11 “error rates,” “power,” and other related ideas. Even though
we use P values in the context of this testing system today, it
is not a comfortable marriage, and many of the misconcep-
tions we will review flow from that unnatural union. In-
depth explanation of the incoherence of this system, and the
confusion that flows from its use can be found in the litera-
ture.'6.18-20 Here we will focus on misconceptions about how
the P value should be interpreted.

The definition of the P value is as follows—in words: The
probability of the observed result, plus more extreme results, if the
null hypothesis were true; in algebraic notation: Prob(X = x |
Ho), where “X” is a random variable corresponding to some
way of summarizing data (such as a mean or proportion), and
“x”is the observed value of that summary in the current data.
This is shown graphically in Figure 1.

We have now mathematically defined this thing we call a P
value, but the scientific question is, what does it mean? This is
not the same as asking what people do when they observe
P =.05. That is a custom, best described sociologically. Ac-
tions should be motivated or justified by some conception of
foundational meaning, which is what we will explore here.

Table 1 Twelve P-Value Misconceptions

Because the P value is not part of any formal calculus of
inference, its meaning is elusive. Below are listed the most
common misinterpretations of the P value, with a brief dis-
cussion of why they are incorrect. Some of the misconcep-
tions listed are equivalent, although not often recognized as
such. We will then look at the P value through a Bayesian lens
to get a better understanding of what it means from an infer-
ential standpoint.

For simplicity, we will assume that the P value arises from
a two-group randomized experiment, in which the effect of
an intervention is measured as a difference in some average
characteristic, like a cure rate. We will not explore the many
other reasons a study or statistical analysis can be misleading,
from the presence of hidden bias to the use of improper
models; we will focus exclusively on the P value itself, under
ideal circumstances. The null hypothesis will be defined as
the hypothesis that there is no effect of the intervention (Ta-
ble 1).

Misconception #1: If P=.05, the null hypothesis has only a
5% chance of being true. This is, without a doubt, the most
pervasive and pernicious of the many misconceptions about
the P value. It perpetuates the false idea that the data alone
can tell us how likely we are to be right or wrong in our
conclusions. The simplest way to see that this is false is to
note that the P value is calculated under the assumption that
the null hypothesis is true. It therefore cannot simultaneously
be a probability that the null hypothesis is false. Let us sup-
pose we flip a penny four times and observe four heads,
two-sided P = .125. This does not mean that the probability
of the coin being fair is only 12.5%. The only way we can
calculate that probability is by Bayes’ theorem, to be dis-
cussed later and in other chapters in this issue of Seminars in
Hematology.>'-**

Misconception #2: A nonsignificant difference (eg, P >.05)
means there is no difference between groups. A nonsignificant
difference merely means that a null effect is statistically con-
sistent with the observed results, together with the range of
effects included in the confidence interval. It does not make
the null effect the most likely. The effect best supported by
the data from a given experiment is always the observed
effect, regardless of its significance.

Misconception #3: A statistically significant finding is clini-

P = .05 means that we have observed data that would occur only 5% of the time under the null hypothesis.

You should use a one-sided P value when you don’t care about a result in one direction, or a difference in

1 If P = .05, the null hypothesis has only a 5% chance of being true.
2 A nonsignificant difference (eg, P =.05) means there is no difference between groups.
3 A statistically significant finding is clinically important.
4 Studies with P values on opposite sides of .05 are conflicting.
5 Studies with the same P value provide the same evidence against the null hypothesis.
6
7 P = .05 and P =.05 mean the same thing.
8 P values are properly written as inequalities (eg, “P =.02” when P = .015)
9 P = .05 means that if you reject the null hypothesis, the probability of a type | error is only 5%.
10 With a P = .05 threshold for significance, the chance of a type | error will be 5%.
1
that direction is impossible.
12

A scientific conclusion or treatment policy should be based on whether or not the P value is significant.
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Figure 2 Figure showing how the P values of very different signifi-
cance can arise from trials showing the identical effect with different
precision (A, Misconception #4), or how same P value can be de-
rived from profoundly different results (B, Misconception #5).

cally important. This is often untrue. First, the difference may
be too small to be clinically important. The P value carries no
information about the magnitude of an effect, which is cap-
tured by the effect estimate and confidence interval. Second,
the end point may itself not be clinically important, as can
occur with some surrogate outcomes: response rates versus
survival, CD4 counts versus clinical disease, change in a mea-
surement scale versus improved functioning, and so on.2>27

Misconception #4: Studies with P values on opposite sides of
.05 are conflicting. Studies can have differing degrees of sig-
nificance even when the estimates of treatment benefit are
identical, by changing only the precision of the estimate, typ-
ically through the sample size (Figure 2A). Studies statisti-
cally conflict only when the difference between their results is
unlikely to have occurred by chance, corresponding to when
their confidence intervals show little or no overlap, formally
assessed with a test of heterogeneity.

Misconception #5: Studies with the same P value provide the
same evidence against the null hypothesis. Dramatically different
observed effects can have the same P value. Figure 2B shows
the results of two trials, one with a treatment effect of 3%
(confidence interval [CI], 0% to 6%), and the other with an
effect of 19% (CI, 0% to 38%). These both have a P value of
.05, but the fact that these mean different things is easily
demonstrated. If we felt that a 10% benefit was necessary to
offset the adverse effects of this therapy, we might well adopt
a therapy on the basis of the study showing the large effect
and strongly reject that therapy based on the study showing
the small effect, which rules out a 10% benefit. It is of course
also possible to have the same P value even if the lower CI is
not close to zero.

This seeming incongruity occurs because the P value de-
fines “evidence” relative to only one hypothesis—the null.
There is no notion of positive evidence—if data with a P =
.05 are evidence against the null, what are they evidence for?
In this example, the strongest evidence for a benefit is for 3%
in one study and 19% in the other. If we quantified evidence
in a relative way, and asked which experiment provided

greater evidence for a 10% or higher effect (versus the null),
we would find that the evidence was far greater in the trial
showing a 19% benefit.1318.28

Misconception #6: P = .05 means that we have observed
data that would occur only 5% of the time under the null hypoth-
esis. That this is not the case is seen immediately from the P
value’s definition, the probability of the observed data, plus
more extreme data, under the null hypothesis. The result with
the P value of exactly .05 (or any other value) is the most
probable of all the other possible results included in the “tail
area” that defines the P value. The probability of any individ-
ual result is actually quite small, and Fisher said he threw in
the rest of the tail area “as an approximation.” As we will see
later in this chapter, the inclusion of these rarer outcomes
poses serious logical and quantitative problems for the P
value, and using comparative rather than single probabilities
to measure evidence eliminates the need to include outcomes
other than what was observed.

This is the error made in the published survey of medical
residents cited in the Introduction,? where the following four
answers were offered as possible interpretations of P >.05:

a. The chances are greater than 1 in 20 that a difference
would be found again if the study were repeated.

b. The probability is less than 1 in 20 that a difference this
large could occur by chance alone.

c. The probability is greater than 1 in 20 that a difference
this large could occur by chance alone.

d. The chance is 95% that the study is correct.

The correct answer was identified as “c”, whereas the ac-
tual correct answer should have read, “The probability is
greater than 1 in 20 that a difference this large or larger could
occur by chance alone.”

These “more extreme” values included in the P-value def-
inition actually introduce an operational difficulty in calcu-
lating P values, as more extreme data are by definition unob-
served data. What “could” have been observed depends on
what experiment we imagine repeating. This means that two
experiments with identical data on identical patients could
generate different P values if the imagined “long run” were
different. This can occur when one study uses a stopping
rule, and the other does not, or if one employs multiple
comparisons and the other does not.23°

Misconception #7: P = .05 and P =.05 mean the same
thing. This misconception shows how diabolically difficult it
is to either explain or understand P values. There is a big
difference between these results in terms of weight of evi-
dence, but because the same number (5%) is associated with
each, that difference is literally impossible to communicate. It
can be calculated and seen clearly only using a Bayesian evi-
dence metric.!°

Misconception #8: P values are properly written as inequal-
ities (eg, “P =.02” when P = .015). Expressing all P values as
inequalities is a confusion that comes from the combination
of hypothesis tests and P values. In a hypothesis test, a pre-set
“rejection” threshold is established. It is typically set at P =
.05, corresponding to a type I error rate (or “alpha”) of 5%. In
such a test, the only relevant information is whether the
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difference observed fell into the rejection region or not, for
example, whether or not P =.05. In that case, expressing the
result as an inequality (P =.05 v P >.05) makes sense. But we
are usually interested in how much evidence there is against
the null hypothesis; that is the reason P values are used. For
that purpose, it matters whether the P value equals .50, .06,
.04 or .00001. To convey the strength of evidence, the exact
P value should always be reported. If an inequality is used to
indicate merely whether the null hypothesis should be re-
jected or not, that can be done only with a pre-specified
threshold, like .05. The threshold cannot depend on the observed
Pvalue, meaning we cannot report “P <<.01” if we observe P =
.008 and the threshold was .05. No matter how low the P
value, we must report “P <.05.” But rejection is very rarely
the issue of sole interest. Many medical journals require that
very small P values (eg, <.001) be reported as inequalities as
a stylistic issue. This is ordinarily not a big problem except in
situations where literally thousands of statistical tests have
been done (as in genomic experiments) when many very
small P values can be generated by chance, and the distinc-
tion between the small and the extremely small P values are
important for proper conclusions.

Misconception #9: P = .05 means that if you reject the null
hypothesis, the probability of a type I error is only 5%. Now we
are getting into logical quicksand. This statement is equiva-
lent to Misconception #1, although that can be hard to see
immediately. A type I error is a “false positive,” a conclusion
that there is a difference when no difference exists. If such a
conclusion represents an error, then by definition there is no
difference. So a 5% chance of a false rejection is equivalent to
saying that there is a 5% chance that the null hypothesis is
true, which is Misconception #1.

Another way to see that this is incorrect is to imagine that
we are examining a series of experiments on a therapy we are
certain is effective, such as insulin for diabetes. If we reject
the null hypothesis, the probability that rejection is false (a
type 1 error) is zero. Since all rejections of the null hypothesis
are true, it does not matter what the P value is. Conversely, if
we were testing a worthless therapy, say copper bracelets for
diabetes, all rejections would be false, regardless of the P
value. So the chance that a rejection is right or wrong clearly
depends on more than just the P value. Using the Bayesian
lexicon, it depends also on our a priori certitude (or the
strength of external evidence), which is quantified as the
“prior probability” of a hypothesis.

Misconception #10: With a P = .05 threshold for signifi-
cance, the chance of a type I error will be 5%. What is different
about this statement from Misconception #9 is that here we
are looking at the chance of a type I error before the experi-
ment is done, not after rejection. However, as in the previous
case, the chance of a type I error depends on the prior prob-
ability that the null hypothesis is true. If it is true, then the
chance of a false rejection is indeed 5%. If we know the null
hypothesis is false, there is no chance of a type I error. If we
are unsure, the chance of a false positive lies between zero
and 5%.

The point above assumes no issues with multiplicity or
study design. However, in this new age of genomic medicine,

it is often the case that literally thousands of implicit hypoth-
eses can be addressed in a single analysis, as in comparing the
expression of 5,000 genes between diseased and non-dis-
eased subjects. If we define “type I error” as the probability
that any of thousands of possible predictors will be falsely
declared as “real,” then the P value on any particular predic-
tor has little connection with the type I error related to the
whole experiment. Here, the problem is not just with the P
value itself but with the disconnection between the P value
calculated for one predictor and a hypothesis encompassing
many possible predictors. Another way to frame the issue is
that the search through thousands of predictors implies a
very low prior probability for any one of them, making the
posterior probability for a single comparison extremely low
even with a low P value. Since the 1 — (posterior probability)
is the probability of making an error when declaring that
relationship “real,” a quite low P value still carries with it a
high probability of false rejection.3!3?

Misconception #11: You should use a one-sided P value
when you don’t care about a result in one direction, or a difference
in that direction is impossible. This is a surprisingly subtle and
complex issue that has received a fair amount of technical
discussion, and there are reasonable grounds for disagree-
ment.>>-3® But the operational effect of using a one-sided P
value is to increase the apparent strength of evidence for a
result based on considerations not found in the data. Thus,
use of a one-sided P value means the P value will incorporate
attitudes, beliefs or preferences of the experimenter into the
assessment of the strength of evidence. If we are interested in
the P value as a measure of the strength of evidence, this does
not make sense. If we are interested in the probabilities of
making type I or type II errors, then considerations of one-
sided or two-sided rejection regions could make sense, but
there is no need to use P values in that context.

Misconception #12: A scientific conclusion or treatment pol-
icy should be based on whether or not the P value is significant.
This misconception encompasses all of the others. It is equiv-
alent to saying that the magnitude of effect is not relevant,
that only evidence relevant to a scientific conclusion is in the
experiment at hand, and that both beliefs and actions flow
directly from the statistical results. The evidence from a given
study needs to be combined with that from prior work to
generate a conclusion. In some instances, a scientifically de-
fensible conclusion might be that the null hypothesis is still
probably true even after a significant result, and in other
instances, a nonsignificant P value might still lead to a con-
clusion that a treatment works. This can be done formally
only through Bayesian approaches. To justify actions, we
must incorporate the seriousness of errors flowing from the
actions together with the chance that the conclusions are
wrong.

These misconceptions do not exhaust the range of mis-
statements about statistical measures, inference or even the P
value, but most of those not listed are derivative from the 12
described above. Tt is perhaps useful to understand how to
measure true evidential meaning, and look at the P value
from that perspective. There exists only one calculus for
quantitative inference—Bayes’ theorem—explicated in more
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depth elsewhere and in other articles in this issue. Bayes’
theorem can be written in words in this way:

Odds of the null hypothesis after obtaining the data
= Odds of the null hypothesis before obtaining the data
X Bayes’ factor
or to use more technical terms:
Posterior odds (Hy, given the data)
= Posterior odds (Hy, given the data)

o Prob(Data, under Hy)
Prob(Data, under H,)

where Odds = probability/(1 — probability), Hy, = null hy-
pothesis, and H, = alternative hypothesis.

It is illuminating that the P value does not appear any-
where in this equation. Instead, we have something called the
Bayes’ factor (also called the likelihood ratio in some set-
tings), which is basically the same as the likelihood ratio used
in diagnostic testing.?*3° It measures how strongly the ob-
served data are predicted by two competing hypotheses, and
is a measure of evidence that has most of the properties that
we normally mistakenly ascribe to the P value. Table 2 sum-
marizes desirable properties of an evidential measure, and
contrasts the likelihood ratio to the P value. The main point
here is that our intuition about what constitutes a good mea-
sure of evidence is correct; what is problematic is that the P
value has few of them. Interested readers are referred to more
comprehensive treatments of this contrast, which show,
among other things, that the P value greatly overstates the
evidence against the null hypothesis.* (See article by Sander
Greenland in this issue for more complete discussion of
Bayesian approaches™). Table 3 shows how P values can be
compared to the strongest Bayes’ factors that can be mustered
for that degree of deviation from the null hypothesis. What
this table shows is that (1) P values overstate the evidence
against the null hypothesis, and (2) the chance that rejection
of the null hypothesis is mistaken is far higher than is gener-
ally appreciated even when the prior probability is 50%.

One of many reasons that P values persist is that they are
part of the vocabulary of research; whatever they do or do not
mean, the scientific community feels they understand the
rules with regard to their use, and are collectively not familiar

Tahle 2 Evidential Properties of Bayes’ Factor Versus P Value

P Bayes’

Evidential Property Value Factor
Information about effect size? No Yes
Uses only observed data? No Yes
Explicit alternative hypothesis? No Yes
Positive evidence? No Yes
Sensitivity to stopping rules? Yes No
Easily combined across experiments? No Yes
Part of formal system of inference? No Yes

Tahle 3 Correspondence Between P Value, Smallest Bayes’
Factor, and Posterior Probability of an “Even Odds” Hypoth-
esis

Smallest Smallest Posterior Probability
P Bayes’ of Hy When Prior
Value Factor Probability = 50%
.10 .26 21%
.05 .15 13%
.03 .10 9%
.01 .04 4%
.001 .005 5%

enough with alternative methodologies or metrics. This was
discovered by the editor of the journal Epidemiology who tried
to ban their use but was forced to abandon the effort after
several years. "

In the meantime, what is an enlightened and well-meaning
researcher to do? The most important foundational issue to
appreciate is that there is no number generated by standard
methods that tells us the probability that a given conclusion is
right or wrong. The determinants of the truth of a knowledge
claim lie in combination of evidence both within and outside
a given experiment, including the plausibility and evidential
support of the proposed underlying mechanism. If that
mechanism is unlikely, as with homeopathy or perhaps in-
tercessory prayer, a low P value is not going to make a treat-
ment based on that mechanism plausible. It is a very rare
single experiment that establishes proof. That recognition
alone prevents many of the worst uses and abuses of the P
value. The second principle is that the size of an effect mat-
ters, and that the entire confidence interval should be con-
sidered as an experiment’s result, more so than the P value or
even the effect estimate. The confidence interval incorporates
both the size and imprecision in effect estimated by the data.

There hopefully will come a time when Bayesian measures
of evidence, or at least Bayesian modes of thinking, will sup-
plant the current ones, but until then we can still use stan-
dard measures sensibly if we understand how to reinterpret
them through a Bayesian filter, and appreciate that our infer-
ences must rest on many more pillars of support than the
study at hand.
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The Fisher, Neyman—-Pearson Theories of Testing
Hypotheses: One Theory or Two?

E. L. LEHMANN*

The Fisher and Neyman-Pearson approaches to testing statistical hypotheses are compared with respect to their attitudes to the
interpretation of the outcome, to power, to conditioning, and to the use of fixed significance levels. It is argued that despite basic
philosophical differences, in their main practical aspects the two theories are complementary rather than contradictory and that a
unified approach is possible that combines the best features of both. As applications, the controversies about the Behrens—Fisher
problem and the comparison of two binomials (2 X 2 tables) are considered from the present point of view.

KEY WORDS: Behrens-Fisher problem; Conditioning; Power; p-value; Significance level.

1. INTRODUCTION

The formulation and philosophy of hypothesis testing as
we know it today was largely created in the period 1915-
1933 by three men: R. A. Fisher (1890-1962), J. Neyman
(1894-1981), and E. S. Pearson (1895-1980). Since then it
has expanded into one of the most widely used quantitative
methodologies, and has found its way into nearly all areas
of human endeavor. It is a fairly commonly held view that
the theories due to Fisher on the one hand, and to Neyman
and Pearson on the other, are quite distinct. This is reflected
in the fact that separate terms are often used (although
somewhat inconsistently) to designate the two approaches:
significance testing for Fisher and hypothesis testing for
Neyman and Pearson. (Since both are concerned with the
testing of hypotheses, it is convenient here to ignore this
terminological distinction and to use the term ‘“hypothesis
testing” regardless of whether the testing is carried out in a
Fisherian or Neyman-Pearsonian mode.)

There clearly are important differences, both in philosophy
and in the treatment of specific problems. These were fiercely
debated by Fisher and Neyman in a way described by Zabell
(1992) as “a battle which had a largely destructive effect on
the statistical profession.” I believe that the ferocity of the
rhetoric has created an exaggerated impression of irrecon-
cilability. The purpose of this article is to see whether there
exists a common ground that permits a resolution of some
of the principal differences and a basis for rational discussion
of the remaining ones.

Some of the Fisher-Neyman debate is concerned with is-
sues studied in depth by philosophers of science (see, for
example, Braithwaite 1953; Hacking 1965; Kyburg 1974;
and Seidenfeld 1979). I am not a philosopher, and this article
is written from a statistical, not a philosophical, point of
view.

Section 2 presents some historical background for the two
points of view. Section 3 discusses the basic philosophical
difference between Fisher and Neyman. (Although the main
substantive papers [NP 1928 and 1933a] were joint by Ney-
man and Pearson, their collaboration stopped soon after
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Neyman left Pearson’s Department to set up his own pro-
gram in Berkeley. After that, the debate was carried on pri-
marily by Fisher and Neyman.) Sections 4, 5, and 6 discuss
three specific issues on which the two schools differ (fixed
levels versus p values, power, and conditioning). Section 7
illustrates the effect of these differences on the treatment of
two statistical problems, the 2 X 2 table and the Behrens—
Fisher problem, that have become focal points of the con-
troversy. Finally, Section 8 suggests a unified point of view
that does not resolve all questions but provides a common
basis for discussing the remaining issues.

For the sake of completeness, it should be said that in
addition to the Fisher and Neyman-Pearson theories there
exist other philosophies of testing, of which we shall mention
only two. There is Bayesian hypothesis testing, which, on
the basis of stronger assumptions, permits assigning proba-
bilities to the various hypotheses being considered. All three
authors were very hostile to this formulation and were in
fact motivated in their work by a desire to rid hypothesis
testing of the need to assume a prior distribution over the
available hypotheses.

Finally, in certain important situations tests can be ob-
tained by an approach also due to Fisher for which he used
the term fiducial. Most comparisons of Fisher’s work on hy-
pothesis testing with that of Neyman and Pearson (see, for
example, Barnett 1982; Carlson 1976; Morrison and Henkel
1970; Spielman 1974, 1978; Steger 1971) do not include a
discussion of the fiducial argument, which most statisticians
have found difficult to follow. Although Fisher himself
viewed fiducial considerations to be a very important part
of his statistical thinking, this topic can be split off from
other aspects of his work, and here I shall consider neither
the fiducial nor the Bayesian approach any further.

Critical discussion of the issues considered in this article
with references to the extensive literature, in a wider context
and from viewpoints differing from that presented here, can
be found in, for example, Oakes (1986) and Gigerenzer et
al. (1989).

2. TESTING STATISTICAL HYPOTHESES

The modern theory of testing hypotheses began with Stu-
dent’s discovery of the # test in 1908. This was followed by
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Fisher with a series of papers culminating in his book Sta-
tistical Methods for Research Workers (1925), in which he
created a new paradigm for hypothesis testing. He greatly
extended the applicability of the ¢ test (to the two-sample
problem and the testing of regression coefficients) and gen-
eralized it to the testing of hypotheses in the analysis of vari-
ance. He advocated 5% as the standard level (with 1% as a
more stringent alternative); through applying this new
methodology to a variety of practical examples, he established
it as a highly popular statistical approach for many fields of
science.

A question that Fisher did not raise was the origin of his
test statistics: Why these rather than some others? This is
the question that Neyman and Pearson considered and which
(after some preliminary work in Neyman and Pearson 1928)
they later answered (Neyman and Pearson 1933a). Their
solution involved not only the hypothesis but also a class of
possible alternatives and the probabilities of two kinds of
error: false rejection (Error I) and false acceptance (Error II).
The “best” test was one that minimized P, (Error II) subject
to a bound on Py (Error I), the latter being the significance
level of the test. They completely solved this problem for the
case of testing a simple (i.e., single distribution) hypothesis
against a simple alternative by means of the Neyman-
Pearson lemma. For more complex situations, the theory
required additional concepts, and working out the details of
this program was an important concern of mathematical
statistics in the following decades.

The Neyman-Pearson introduction to the two kinds of
error contained a brief statement that was to become the
focus of much later debate. “Without hoping to know
whether each separate hypothesis is true or false”, the authors
wrote, “we may search for rules to govern our behavior with
regard to them, in following which we insure that, in the
long run of experience, we shall not be too often wrong.”
And in this and the following paragraph they refer to a test
(i.e., a rule to reject or accept the hypothesis) as “‘a rule of
behavior”.

3. INDUCTIVE INFERENCE
VERSUS INDUCTIVE BEHAVIOR

Fisher considered statistics, the science of uncertain in-
ference, able to provide a key to the long-debated problem
of induction. He started one paper (Fisher 1932, p. 257) with
the statement “Logicians have long distinguished two modes
of human reasoning, under the respective names of deductive
and inductive reasoning. . . . In inductive reasoning we at-
tempt to argue from the particular, which is typically a body
of observational material, to the general, which is typically
a theory applicable to future experience.” He developed his
ideas in more detail in a later paper (Fisher 1935a, p. 39)

. . everyone who does habitually attempt the difficult task of
making sense of figures is, in fact, essaying a logical process of
the kind we call inductive, in that he is attempting to draw in-

ferences from the particular to the general. Such inferences we
recognize to be uncertain inferences. . . .

He continued in the next paragraph:

Although some uncertain inferences can be rigorously expressed
in terms of mathematical probability, it does not follow that
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mathematical probability is an adequate concept for the rigorous
expression of uncertain inferences of every kind. . . . The in-
ferences of the classical theory of probability are all deductive in
character. They are statements about the behaviour of individuals,
or samples, or sequences of samples, drawn from populations
which are fully known. . . . More generally, however, a math-
ematical quantity of a different kind, which I have termed math-
ematical likelihood, appears to take its place [i.e., the place of
probability] as a measure of rational belief when we are reasoning
from the sample to the population.

Neyman did not believe in the need for a special inductive
logic but felt that the usual processes of deductive thinking
should suffice. More specifically, he had no use for Fisher’s
idea of likelihood. In his discussion of Fisher’s 1935 paper
(Neyman, 1935, p. 74, 75) he expressed the thought that it
should be possible “to construct a theory of mathematical
statistics . . . based solely upon the theory of probability,”
and went on to suggest that the basis for such a theory can
be provided by “the conception of frequency of errors in
judgment.” This was the approach that he and Pearson had
earlier described as “inductive behavior”; in the case of hy-
pothesis testing, the behavior consisted of either rejecting the
hypothesis or (provisionally) accepting it.

Both Neyman and Fisher considered the distinction be-
tween “inductive behavior” and “inductive inference” to lie
at the center of their disagreement. In fact, in writing ret-
rospectively about the dispute, Neyman (1961, p. 142) said
that “the subject of the dispute may be symbolized by the
opposing terms “inductive reasoning” and “inductive be-
havior.” How strongly Fisher felt about this distinction is
indicated by his statement in Fisher (1973, p. 7) that “there
is something horrifying in the ideological movement repre-
sented by the doctrine that reasoning, properly speaking,
cannot be applied to empirical data to lead to inferences
valid in the real world.”

4. FIXED LEVELS VERSUS p VALUES

A distinction frequently made between the approaches of
Fisher and Neyman-Pearson is that in the latter the test is
carried out at a fixed level, whereas the principal outcome
of the former is the statement of a p value that may or may
not be followed by a pronouncement concerning significance
of the result.

The history of this distinction is curious. Throughout the
19th century, testing was carried out rather informally. It
was roughly equivalent to calculating an (approximate) p
value and rejecting the hypothesis if this value appeared to
be sufficiently small. These early approximate methods re-
quired only a table of the normal distribution. With the ad-
vent of exact small-sample tests, tables of X2, ¢, F, . . . were
also required. Fisher, in his 1925 book and later, greatly
reduced the needed tabulations by providing tables not of
the distributions themselves but of selected quantiles. (For
an explanation of this very influential decision by Fisher see
Kendall [1963]. On the other hand Cowles and Davis [1982]
argue that conventional levels of three probable errors or
two standard deviations, both roughly equivalent [in the
normal case] to 5% were already in place before Fisher.)
These tables allow the calculation only of ranges for the p
values; however, they are exactly suited for determining the
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critical values at which the statistic under consideration be-
comes significant at a given level. As Fisher wrote in ex-
plaining the use of his x? table (1946, p. 80):

In preparing this table we have borne in mind that in practice we

do not want to know the exact value of P for any observed X2,

but, in the first place, whether or not the observed value is open

to suspicion. If Pis between .1 and .9, there is certainly no reason

to suspect the hypothesis tested. If it is below .02, it is strongly

indicated that the hypothesis fails to account for the whole of the

facts. We shall not often be astray if we draw a conventional line

at .05 and consider that higher values of X? indicate a real dis-

crepancy.

Similarly, he also wrote (1935, p. 13) that “it is usual and
convenient for experimenters to take 5 percent as a standard
level of significance, in the sense that they are prepared to
ignore all results which fail to reach this standard . . .”

Fisher’s views and those of some of his contemporaries
are discussed in more detail by Hall and Selinger (1986).

Neyman and Pearson followed Fisher’s adoption of a fixed
level. In fact, Pearson (1962, p. 395) acknowledged that they
were influenced by “[Fisher’s] tables of 5 and 1% significance
levels which lent themselves to the idea of choice, in advance
of experiment, of the risk of the ‘first kind of error’ which
the experimenter was prepared to take.” He was even more
outspoken in a letter to Neyman of April 28, 1978 (unpub-
lished; in the Neyman collection of the Bancroft Library,
University of California, Berkeley): “If there had not been
these % tables available when you and I started work on
testing statistical hypotheses in 1926, or when you were
starting to talk on confidence intervals, say in 1928, how
much more difficult it would have been for us! The concept
of the control of 1st kind of error would not have come so
readily nor your idea of following a rule of behaviour. . . .
Anyway, you and I must be grateful for those two tables in
the 1925 Statistical Methods for Research Workers.” (For
an idea of what the Neyman-Pearson theory might have
looked like had it been based on p values instead of fixed
levels, see Schweder 1988.)

It is interesting to note that unlike Fisher, Neyman and
Pearson (1933a, p. 296) did not recommend a standard level
but suggested that “how the balance [between the two kinds
of error] should be struck must be left to the investigator,”
and (1933b, p. 497) “we attempt to adjust the balance be-
tween the risks P; and Pj; to meet the type of problem be-
fore us.”

It is thus surprising that in SMSI Fisher (1973, p. 44-45)
criticized the NP use of a fixed conventional level. He ob-
jected that

the attempts that have been made to explain the cogency of tests
of significance in scientific research, by reference to supposed
frequencies of possible statements, based on them, being right or
wrong, thus seem to miss the essential nature of such tests. A
man who ‘rejects’ a hypothesis provisionally, as a matter of ha-
bitual practice, when the significance is 1% or higher, will certainly
be mistaken in not more than 1% of such decisions. . . . However,
the calculation is absurdly academic, for in fact no scientific worker
has a fixed level of significance at which from year to year, and
in all circumstances, he rejects hypotheses; he rather gives his

mind to each particular case in the light of his evidence and his
ideas.

The difference between the reporting of a p value or that
of a statement of acceptance or rejection of the hypothesis
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was linked by Fisher in Fisher (1973, pp. 79-80), to the
distinction between drawing conclusions or making deci-
sions.

The conclusions drawn from such tests constitute the steps by
which the research worker gains a better understanding of his
experimental material, and of the problems which it presents.
. . . More recently, indeed, a considerable body of doctrine has
attempted to explain, or rather to reinterpret, these tests on the
basis of quite a different model, namely as means to making de-
cisions in an acceptance procedure.

Responding to earlier versions of these and related objec-
tions by Fisher to the Neyman-Pearson formulation, Pearson
(1955, p. 206) admitted that the terms ‘“acceptance” and
“rejection” were perhaps unfortunately chosen, but of his
joint work with Neyman he said that “from the start we
shared Professor Fisher’s view that in scientific inquiry, a
statistical test is ‘a means of learning’ ” and “I would agree
that some of our wording may have been chosen inade-
quately, but I do not think that our position in some respects
was or is so very different from that which Professor Fisher
himself has now reached.”

The distinctions under discussion are of course related to
the argument about “inductive inference” vs. “inductive be-
havior,” but in this debate Pearson refused to participate.
He concludes his response to Fisher’s 1955 attack with:
“Professor Fisher’s final criticism concerns the use of the
term ‘inductive behavior’; this is Professor Neyman’s field
rather than mine.”

5. POWER

As was mentioned in Section 2, a central consideration
of the Neyman-Pearson theory is that one must specify not
only the hypothesis H but also the alternatives against which
it is to be tested. In terms of the alternatives, one can then
define the type Il error (false acceptance) and the power of
the test (the rejection probability as a function of the alter-
native). This idea is now fairly generally accepted for its
importance in assessing the chance of detecting an effect
(i.e., a departure from H) when it exists, determining the
sample size required to raise this chance to an acceptable
level, and providing a criterion on which to base the choice
of an appropriate test.

Fisher never wavered in his strong opposition to these
ideas. Following are some of his objections:

1. A type II error consists in falsely accepting H, and
Fisher (1935b, p. ) emphasized that there is no reason for
“believing that a hypothesis has been proved to be true merely
because it is not contradicted by the available facts.” This is
of course correct, but it does not diminish the usefulness of
power calculations.

2. A second point Fisher raised is, in modern terminology,
that the power cannot be calculated because it depends on
the unknown alternative. For example (Fisher 1955, p. 73),
he wrote:

The frequency of the 1st class [type I error] . . . is calculable and
therefore controllable simply from the specification of the null
hypothesis. The frequency of the 2nd kind must depend . . .
greatly on how closely they [rival hypotheses] resemble the null



Lehmann: Theories of Testing Hypotheses

hypothesis. Such errors are therefore incalculable . . . merely
from the specification of the null hypothesis, and would never
have came into consideration in the theory only of tests of sig-
nificance, had the logic of such tests not been confused with that
of acceptance procedures. (He discussed the same point in Fisher
1947, p. 16-17.)

Fisher was of course aware of the importance of power,
as is clear from the following remarks (1947, p. 24): “With
respect to the refinements of technique, we have seen above
that these contribute nothing to the validity of the experiment
and of the test of significance by which we determine its
result. They may, however, be important, and even essential,
in permitting the phenomenon under test to manifest itself.”
The section in which this statement appears is tellingly en-
titled “Qualitative Methods of Increasing Sensitiveness.”
Fisher accepted the importance of the concept but denied
the possibility of assessing it quantitatively.

Later in the same book Fisher made a very similar dis-
tinction regarding the choice of test. Under the heading
“Multiplicity of Tests of the Same Hypothesis,” he devoted
a section (sec. 61) to this topic. Here again, without using
the term, he referred to alternatives when he wrote (Fisher
1947, p. 182) that “we may now observe that the same data
may contradict the hypothesis in any of a number of different
ways.” After illustrating how different tests would be appro-
priate for different alternatives, he continued (p. 185):

The notion that different tests of significance are appropriate to
test different features of the same null hypothesis presents no
difficulty to workers engaged in practical experimentation but
has been the occasion of much theoretical discussion among stat-
isticians. The reason for this diversity of view-point is perhaps
that the experimenter is thinking in terms of observational values,
and is aware of what observational discrepancy it is which interests
him, and which he thinks may be statistically significant, before
he inquires what test of significance, if any, is available appropriate
to his needs. He is, therefore, not usually concerned with the
question: To what observational feature should a test of signifi-
cance be applied?

The idea that there is no need for a theory of test choice,
because an experienced experimenter knows what is the ap-
propriate test, is expressed more strongly in a letter to W. E.
Hick of October 1951 (Bennett 1990, p. 144), who, in asking
about “one-tail” vs. “two-tail” in X2, had referred to his lack
of knowledge concerning “the theory of critical regions,
power, etc.””:

1 am a little sorry that you have been worrying yourself at all with
that unnecessarily portentous approach to tests of significance
represented by the Neyman and Pearson critical regions, etc. In
fact, I and my pupils throughout the world would never think of
using them. If I am asked to give an explicit reason for this I
should say that they approach the problem entirely from the wrong
end, i.e., not from the point of view of a research worker, with a
basis of well grounded knowledge on which a very fluctuating
population of conjectures and incoherent observations is contin-
ually under examination. In these circumstances the experimenter
does know what observation it is that attracts his attention. What
he needs is a confident answer to the question “ought I to take
any notice of that?” This question can, of course, and for refine-
ment of thought should, be framed as “Is this particular hypothesis
overthrown, and if so at what level of significance, by this particular
body of observations?” It can be put in this form unequivocally
only because the genuine experimenter already has the answers
to all the questions that the followers of Neyman and Pearson
attempt, I think vainly, to answer by merely mathematical con-
sideration.
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6. CONDITIONAL INFERENCE

While Fisher’s approach to testing included no detailed
consideration of power, the Neyman-Pearson approach
failed to pay attention to an important concern raised by
Fisher. To discuss this issue, we must begin by considering
briefly the different meanings that Fisher and Neyman attach
to probability.

For Neyman, the idea of probability is fairly straightfor-
ward: It represents an idealization of long-run frequency in
a long sequence of repetitions under constant conditions (see,
for example, Neyman 1952, p. 27; 1957, p. 9). Later (Ney-
man 1977), he pointed out that by the law of large numbers,
this idea permits an extension: If a sequence of independent
events is observed, each with probability p of success, then
the long-run success frequency will be approximately p even
if the events are not identical. This property adds greatly to
the appeal and applicability of a frequentist probability. In
particular, it is the way in which Neyman came to interpret
the value of a significance level.

On the other hand, the meaning of probability is a problem
with which Fisher grappled throughout his life. Not surpris-
ingly, his views too underwent some changes. The concept
at which he eventually arrived is much broader than Ney-
man’s: “In a statement of probability, the predicand, which
may be conceived as an object, as an event, or as a propo-
sition, is asserted to be one of a set of a number, however
large, of like entities of which a known proportion, P, have
some relevant characteristic, not possessed by the remainder.
It is further asserted that no subset of the entire set, having
a different proportion, can be recognized” (Fisher 1973, p.
113). It is this last requirement, Fisher’s version of the “re-
quirement of total evidence” (Carnap 1962, sec. 45), which
is particularly important to the present discussion.

Example 1 (Cox 1958). Suppose that we are concerned
with the probability P(X < x), where X is normally distrib-
uted as N(pu, 1) or N(u, 4), depending on whether the spin
of a fair coin results in heads (H) or tails (T). Here the set
of cases in which the coin falls heads is a recognizable subset;
therefore, Fisher would not admit the statement

(1)

P(sz)=%@(x—u)+—;—d>(x;“)

as legitimate. Instead, he would have required P(X < x) to
be evaluated conditionally as
P(X<=x|H)=®x—pn) or

—p

P(X < x|T) = @(x ) )
depending on the outcome of the spin.

On the other hand, Neyman would have taken (1) to pro-
vide the natural assessment of P(X < x). Despite this pref-
erence, there is nothing in the Neyman-Pearson (frequentist)
approach to prevent consideration of the conditional prob-
abilities (2). The critical issue from a frequentist viewpoint
is what to consider as the relevant replications of the exper-
iment: a sequence of observations from the same normal
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distribution or a sequence of coin tosses, each followed by
an observation from the appropriate normal distribution.

Consider now the problem of testing H: u = 0 against the
simple alternative 4 = 1 on the basis of a sample X, ...,
X, from the distribution (1). The Neyman-Pearson lemma
would tell us to reject H when

L e Zi—D¥2 4 L

2w 2 2\6;

11 2, 1 1

222

where K is determined so that the probability of (3) when u
= 0 is equal to the specified level a.

On the other hand, a Fisherian approach would adjust the
test to whether the coin falls H or T and would use the re-
jection region

L e~ T2 5 g L e~ Zxi/2

2w 27

e~2(xi~1)2/8

N =

e T (3)

when the coin falls H (4)

and

1
e—Z(xi—l)z/S > K,

1
2V2r 2V2r

e—Zx,?/s

when the coin falls T,

&)

where K, and K, are determined so that the null probability
of both (4) and (5) is equal to a. It is easily seen that these
two tests are not equivalent. Which one should we prefer?

Test (3) has the advantage of being more powerful in the
sense that when the full experiment of spinning a coin and
then taking n observations on X is repeated many times, and
when p = 1, this test will reject the hypothesis more fre-
quently.

The second test has the advantage that its conditional level
given the outcome of the spin is & both when the outcome
is H and when it is T. [The conditional level of the first test
will be <a for one of the two outcomes and >« for the
other.]

Which of these considerations is more important depends
on the circumstances. Echoing Fisher, we might say that we
prefer (1) in an acceptance sampling situation where interest
focuses not on the individual cases but on the long-run fre-
quency of errors, but that we would prefer the second test
in a scientific situation where long-run considerations are
irrelevant and only the circumstances at hand (i.e., H or T)
matter. As Fisher put it (1973, p. 101-102), referring to a
different but similar situation: “It is then obvious at the time
that the judgment of significance has been decided not by
the evidence of the sample, but by the throw of a coin. It is
not obvious how the research worker is to be made to forget
this circumstance, and it is certain that he ought not to forget
it, if he is concerned to assess the weight only of objective
observational facts against the hypothesis in question.”

The present example is of course artificial, but the same
issue arises whenever there exists an ancillary statistic (see,
for example, Cox and Hinkley 1974; Lehmann 1986), and
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it seems to lie at the heart of the cases in which the two
theories disagree on specific tests. The two most prominent
of these cases are discussed in the next section.

7. TWO EXAMPLES

For many problems, a pure Fisherian or Neymann-—
Pearsonian approach will lead to the same test. Suppose in
particular that the observations X follow a distribution from
an exponential family with density

Pralx) = C(8, 3)e" )+ 2iomi) (6)
and consider testing the hypothesis
H: 0 =6, @)

against the one-sided alternatives § > 6. Then Fisher would
conditionon T'=(T,,. .., T;) and would in the conditional
model consider it natural to calculate the p value as the con-
ditional probability of U = u, where u is the observed value
of U. At a given level «, the result would be declared sig-
nificant if U = C(t), where C(¢) is determined by

PIU>C@)|T=1=a 8)

A Neyman-Pearson viewpoint would lead to the same test
as being uniformly most powerful among all similar tests.
But as we have seen in Example 1, the two approaches do
not always lead to the same result. We next consider the two
examples that have engendered the most controversy.

Example 2: The 2 X 2 table with one fixed margin. Let
X, Y be two independent binomial variables with suc-
cess probabilities p; and p, and corresponding to m and n
trials. The problem of testing H: p, = p; against the al-
ternatives p, > p; is of the form given by (6) and (7) with
0 = log[(p2/42)/(p1/a1)], T= X+ Yand U = Y. Ba-
sically, there is therefore no conflict between the two ap-
proaches. However, because of the discreteness of the con-
ditional distribution of U given ¢, condition (8) typically
cannot be satisfied. Fisher’s exact test then chooses C(¢) to
be the largest constant for which

PIU>C(H)|T=t] < a. )

For small values of ¢, this may lead to conditional levels
substantially less than «; for small m and », the same may
be true for the unconditional level. For this reason, Fisher’s
exact test has been criticized as being too conservative. Many
alternatives have been proposed for which the unconditional
level (which is a function of p; = p,) is much closer to a.
Upton (1982) lists 22; for other surveys, see Yates (1984)
and Agresti (1992).

The issues are similar to those encountered in Example
1. If conditioning is considered appropriate (and in the pres-
ent case it typically is), and if control of type I error at level
o is considered essential, then the only sensible test available
is of the form U > C(t), where C(¢) is the largest value
satisfying (9). If, on the other hand, only the unconditional
performance is considered relevant, then we may allow the
conditional level of the region U > C(t) to exceed « for some
values of ¢ in such a way that the unconditional level (which
is the expected value of the conditional level) gets closer to
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a while remaining <a for all values of p, = p;. This is es-
sentially what the alternatives to Fisher’s exact tests try to
achieve. (The same issues arise also when analyzing 2 X 2
tables in which none of the margins are fixed.)

Example 3: Behrens—Fisher problem. Here we are deal-
ing with independent samples X, ..., X,,and Y,,..., Y,
from normal distributions N(£, ¢2) and N(n, 72) and we
wish to test the hypothesis H: » = £. Against the two-sided
alternatives n # £, there is general agreement that the rejection
region should be of the form

(10)

where S% and S% are the usual estimators of ¢ and 72.

Suppose that we consider it appropriate, as Fisher does,
to carry out the analysis conditionally on the value of
S%/S%. If the conditional distribution of the left side of (10)
given S% /8% = c were independent of the parameters and
hence known, there would be no problem. Everyone would
agree to calculate g so that the conditional level is « for each
¢, which would then also result in an unconditional level
identically equal to «. Unfortunately, the conditional dis-
tribution depends on the unknown variances. Two principal
ways out of this difficulty have been proposed.

1. From a Neyman-Pearson point of view, the attempt
has been to construct a function g for which the probability
of (10) is =« under H for all ¢ and 7 (it actually depends
only on the ratio § = 72/0?). After much effort in this di-
rection, it became clear that an acceptable function g satis-
fying this condition does not exist. But Welch and Aspin
have produced tests whose level differs from « so little over
the entire range of 6 that, for all practical purposes, they can
be viewed as solutions to the problem. (For a discussion and
references see, for example, Stuart and Ord 1991, sec. 20.33.)

2. These tests are unacceptable to Fisher, however, be-
cause they admit recognizable subsets. In particular, Fisher
(1956) produced an example for which the conditional level
given S%/S% = 1 is always >a + ¢ for some positive e.
Fisher’s own solution to the problem is the so-called Behrens—
Fisher test, which he derived by means of a fiducial argument.
Although it does not follow from this derivation, numerical
evidence (Robinson 1976) strongly suggests that this test is
conservative; that is, its unconditional level is always <a.
But a proof of this fact for all m, n, and 6 is not yet available.

Let us call a set C in the sample space for which there
exists ¢ > 0 such that

Pyrejecting| X € C] > a + ¢ for all distributions in H,

a liberally biased relevant subset. (The corresponding concept
for confidence intervals is called negatively biased.) Robinson
(1976) showed that no such subsets exist for the Behrens—
Fisher test. (Because of this test’s conservative nature, this
is perhaps not too surprising.) He proposed calling a test
conservative if its unconditional level is always <« and if it
does not admit a liberally biased relevant subset, and ex-
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pressed the hope that “perhaps the Behrens-Fisher test is
optimal in some sense among the class of procedures which
are conservative” (Robinson 1976, p. 970). This conjecture
seems to have been disproved by Linssen (1991).

8. ONE THEORY OR TWO?

From the preceding sections it is clear that considerable
differences exist between the viewpoints of Fisher and
Neyman-Pearson. Are these sufficiently contradictory to
preclude a unified theory that would combine the best fea-
tures of both?

A first difference, discussed in Section 4, concerns the re-
porting of the conclusions of the analysis. Should this consist
merely of a statement of significance or nonsignificance at
a given level, or should a p value be reported? The original
reason for fixed, standardized levels—unavailability of more
detailed tables—no longer applies, and in any case reporting
the p value provides more information. On the other hand,
definite decisions or conclusions are often required. Addi-
tionally, in view of the enormously widespread use of testing
at many different levels of sophistication, some statisticians
(and journal editors) see an advantage in standardization;
fortunately, this is a case where you can have your cake and
eat it too. One should routinely report the p value and, where
desired, combine this with a statement on significance at any
stated level. (This was in fact common practice throughout
the 19th Century and is the procedure frequently used by
Fisher.) Two other principal differences, considered in Sec-
tions 5 and 6, are the omissions of power (by Fisher) and of
conditioning (by Neyman-Pearson). It seems clear that a
unified approach needs to incorporate both of these ideas.

For some problems this will cause no difficulty, because
both approaches will lead to the same test, as illustrated at
the beginning of Section 7. But the principles of conditioning
on the one hand and of maximizing the unconditional power
on the other may be in conflict, as is seen from Examples
1-3. This conflict disappears when it is realized that in such
cases priority must be given to deciding on the appropriate
frame of reference; that is, the real or hypothetical sequence
of events that determine the meaning of any probability
statement. Only after this has been settled do probabilistic
concepts such as level and power acquire meaning, and it is
only then that the problem of maximizing power comes into
play.

This leaves the combined theory with its most difficult
issue: What is the relevant frame of reference? It seems clear
that even in the simplest situations (such as Ex. 1), no uni-
versal answer is possible. In any specific case, the solution
will depend on contextual considerations that cannot easily
be captured by a general theory.

That conflicting considerations argue for different solu-
tions in specific cases is not an indictment of a theory, pro-
vided that the theory furnishes a basis for discussing the is-
sues. Although Neyman and Pearson never seem to have
raised the problem of just what constitutes a replication of
an experiment, this question is as important for a frequentist
as it is for an adherent of Fisherian probability. This was
recognized, for example, by Bartlett (1984, p. 453), who
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stated “I regard the ‘frequence requirement of repeated sam-
pling’ as including conditional inferences.” A common basis
for the discussion of various conditioning concepts, such as
ancillaries and relevant subsets, thus exists. The proper choice
of framework is a problem needing further study.

We conclude by considering some more detailed issues
and by reviewing Examples 2 and 3 from the present point
of view.

1. Both Neyman-Pearson and Fisher would give at most
lukewarm support to standard significance levels such as 5%
or 1%. Fisher, although originally recommending the use of
such levels, later strongly attacked any standard choice.
Neyman-Pearson, in their original formulation of 1933, rec-
ommended a balance between the two kinds of error (i.e.,
between level and power). For a disucssion of how to achieve
such a balance, see, for example, Sanathanan (1974). Both
level and power should of course be considered conditionally
whenever conditioning is deemed appropriate. Unfortu-
nately, this is not possible at the planning stage.

2. A second point on which there appears to be no conflict
between the two approaches is “truth in advertising.” Even
if a particular nominal level o, say 5%, is the target, when it
cannot be achieved because of discreteness the test should
not just be described as conservative or liberal relative to the
nominal level; instead, the actual (conditional or uncondi-
tional) level should be stated. If this level is not known be-
cause it depends on unknown parameters, at least its range
should be given and, if possible, also an estimated value.

3. In both the 2 X 2 example and the Behrens-Fisher
problems, the conflict between the solutions proposed by the
two schools is often discussed as that of a desire for a similar
test (i.e., one for which the unconditional level is =a) versus
a suitable conditional test. The issue becomes clearer if one
asks for the reason that Neyman-Pearson proposed the con-
dition of similarity. The explanation begins with the case of
a simple hypothesis where these authors take it for granted
that in order to maximize the power, one would want the
attained level to be equal to rather than less than «. For a
composite hypothesis H, they therefore stated that the level
should equal « for each of the simple hypotheses making up
H. The requirement for similarity thus has its origin in the
desire to maximize power, the issue discussed in Section 5.

In the light of (1) and (2), a unified theory less concerned
with standard nominal levels might jettison not only the
demand for similarity but also that of conservatism relative
to a nominal level.

When similarity cannot be achieved and conservation is
not required, various compromise solutions may be available.
Thus in the 2 X 2 case of Example 2, one could, for example,
select for each ¢ the conditional level closest to a. If this
seems too permissive, then the rule could be modified by
adding a cap on the conditional level beyond which one
would not go. Tests with a variable conditional level that
will sometimes be <a and sometimes >a have been discussed
by Barnard (1989) under the name “flexible Fisher.” Alter-
natively, one might give up on a nominal level altogether
and instead for each ¢ adjust the level to the attainable (con-
ditional) power.
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The situation is much more complicated for the Behrens—
Fisher problem. On the one hand, the arguments for con-
ditioning an S%/S% seems less compelling; on the other
hand, even if this conditioning requirement is accepted, the
conditional distribution depends on unknown parameters,
and thus it is less clear how to control the conditional level.
Robinson’s formulation, mentioned in Section 7, provides
an interesting possibility but requires much further investi-
gation. But such work can be carried out from the present
point of view by combining considerations of both condi-
tioning and power.

To summarize, p values, fixed-level significance state-
ments, conditioning, and power considerations can be com-
bined into a unified approach. When long-term power and
conditioning are in conflict, specification of the appropriate
frame of reference takes priority, because it determines the
meaning of the probability statements. A fundamental gap
in the theory is the lack of clear principles for selecting the
appropriate framework. Additional work in this area will
have to come to terms with the fact that the decision in any
particular situation must be based not only on abstract prin-
ciples but also on contextual aspects.

[Received January 1992. Revised February 1993.]
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STATISTICAL CONCEPTS IN THEIR RELATION TO REALITY

By E. S. PEARSON

University College, London

SUMMARY

THIs paper contains a reply to some criticisms made by Sir Ronald Fisher in his
recent article on ““Statistical Methods and Scientific Induction”’.

Controversies in the field of mathematical statistics seem largely to have arisen because
statisticians have been unable to agree on how theory is to provide, in terms of probability state-
ments, the numerical measures most helpful to those who have to draw conclusions from obser-
vational data. We are concerned here with the ways in which mathematical theory may be
put, as it were, into gear with the common processes of rational thought, and there seems no reason
to suppose that there is one best way in which this can be done. If, therefore, Sir Ronald Fisher
recapitulates and enlarges on his views upon statistical methods and scientific induction we can
all only be grateful, but when he takes this opportunity to criticize the work of others through
misapprehension of their views as he has done in his recent contribution to this Journal (Fisher
1955), it is impossible to leave him altogether unanswered.

In the first place it seems unfortunate that much of Fisher’s criticism of Neyman and Pearson’s
approach to the testing of statistical hypotheses should be built upon a “penetrating observation”
ascribed to Professor G. A. Barnard, the assumption-involved in which happens to be historically
incorrect. There was no question of a difference in point of view having “originated’’ when Neyman
“re-interpreted”” Fisher’s early work on tests of significance “in terms of that technological and
commercial apparatus which is known as an acceptance procedure”. There was no sudden
descent upon British soil of Russian ideas regarding the function of science in relation to tech-
nology and to five-year plans. It was really much simpler—or worse. The original heresy, as we
shall see, was a Pearson one!

As has often been pointed out, the break with the traditional approach to the handling of tests
for the significance of differences came with Student’s paper of 1908, although the implications
of the step which he had taken were not realized for some time. In puzzling over the relation to
this step of Fisher’s early theoretical papers and the first edition of his Statistical Methods for
Research Workers, during the years 1925-27, I could not satisfy myself that the reasons which
had been given for the choice of a particular test function in terms of the theory of estimation were
altogether adequate. It was a question which I discussed from time to time with Student, and I
have already quoted (Pearson, 1938, p. 243) a letter of his written in 1926 which contained the germ
of that fruitful idea about the hypothesis tested and its alternatives. Apart from Student, I
had no contact with industry at that time and it was some years before the publications of W. A.
Shewhart appeared, showing the scope for statistical method in problems of acceptance sampling.
Indeed, to dispel the picture of the Russian technological bogey, I might recall how certain early
ideas came into my head as I sat on a gate overlooking an experimental blackcurrant plot at the
East Malling Research Station!

To the best of my ability I was searching for a way of expressing in mathematical terms what
appeared to me to be the requirements of the scientist in applying statistical tests to his data.
After contact was made with Neyman in 1926, the development of a joint mathematical theory
proceeded much more surely; it was not till after the main lines of this theory had taken shape
with its necessary formalization* in terms of critical regions, the class of admissible hypotheses,
the two sources of error, the power function, etc., that the fact that there was a remarkable paral-
lelism of ideas in the field of acceptance sampling became apparent. Abraham Wald’s contri-

* Necessary just as was the introduction of such terms as ‘“‘sufficiency’’ and ‘“‘amount of information”
in the formal development of Fisher’s theory.
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butions to decision theory of ten to fifteen years later were perhaps strongly influenced by acceptance
sampling problems, but that is another story.

So much for historical clarification. Turn now to some of Professor Fisher’s strictures. It
seems to me that he is often tilting at views which those whom he attacks have neverheld. Where,
for example, do we really stand in regard to the phrase “repeated sampling from the same popu-
lation”?  As Fisher points out (first paragraph of his p. 71), if we have before us a single sample
of observations resulting perhaps from some experimental procedure, the population of possible
samples, which may be termed the reference set, will often have no objective reality, being only
a product of the statistician’s imagination. Further, he remarks: .

“In respect of tests of significance, therefore, there is need for further guidance as to
how this imagination is to be exercised. In fact a careful choice has to be made, based on
the understanding of the question or questions to be answered’’.

I agree entirely with this need for careful choice, but this was just what Neyman and I were
pointing out long ago. The difference often appears to lie in the particular population of samples
considered most appropriate. The two examples which Fisher first discusses, those of linear
regression and the 2 X 2 table, do in fact as a pair throw much light on the question of what is
involved in this exercise of the imagination. .

Professor Fisher’s choice of reference set is based, I think, on his theory of information. Thusin
writing of the 2 X 2 table he speaks (p. 73) of “the reasonable principle that in testing the signi-
ficance with a unique sample, we should compare it only with other possibilities in all relevant
respects like that observed”, and again, in the regression problem, he refers to “a population of
samples in all relevant respects like that observed”. The meaning of terms such as “relevant’
is not of course self-evident without definition, but such phrases form part of Fisher’s general
approach to estimation theory and the reference sets adopted in these two examples are made
perfectly clear. '

We may, however, ask whether there are not other “reasonable principles’ which might be
used to guide the statistician’s imagination. Here, for example, is one. If probability is to be
justly applied to the analysis of data, it follows that a random process must have been introduced
or been naturally present at some stage in the collection of these data. Is there not then an appeal
to the imagination in taking as the hypothetical population of samples that which would have
been generated by repetition of this random process?

If we follow this principle in the regression problem, we see that the reference set will depend
on the character of the experiment or investigation. If the values of x were chosen in advance,
then the population of samples consists of those having these fixed x’s, but with varying y values.
If the data were obtained by sampling N pairs of observations (x, y) freely from a bivariate popu-
lation,* the population of samples may be imagined as enlarged accordingly. In both cases,
however, ¢t = (b — B)/A/s will follow Student’s distribution, although in the second case
A = S(x — %) will vary from sample to sample, as do » and s. From the Neyman and Pearson
point of view, ¢ would be regarded in both instances as the appropriate function of the sample
to use in testing the hypothesis that b = 8, and the awkwardness of the distribution of & itself
in the second situation would be irrelevant. The population of samples having A fixed, which is
the reference set of Professor Fisher’s approach, can clearly be imagined -but does not seem to
have any experimental counterpart which, of course, from his point of view it need not. ‘

The case of the 2 X 2 table provides an interesting companion example. Here, as Barnard
first pointed out, data presented in the same form of table may have been obtained from a sampling or
an experiment conducted in several different ways, For example, they may arise: (i) after the
random partition of a number, N, of individuals into two groups which receive different ““treat-
ments”; (ii) by drawing randomly and independently a sample from each of two populations;
(iii) by drawing a single random sample from a population of individuals possessing two qualitative
characters. Following Fisher and Yates, the statistician should in each case relate his test of
significance to the same reference set, that of the population of samples giving to the table the
same marginal totals as those observed. The other principle to which I have referred would
define three different reference sets, of which only that for case (i) corresponds with the Fisher
and Yates set.

* In which the array distributions of y for fixed x are, of course, normal and homoscedastic.
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Because we are dealing with discontinuous hypergeometric distributions and not with the
normal curve, we do not obtain from this second approach, as in the case of linear regression, a
test function whose distribution is the same for all three reference sets. All that we can say*
is that if the table is denoted by

a c m
b d ‘ n
: r K} | N
then under the null hypothesis
"y a— mr/N
mnrs )%
’[N (N — I)J'

will for all reference sets have zero expectation and unit variance.

But does the existence of this limitation establish that one principle is right, the other wrong?
I think not, because there is still a further matter to be considered which is often overlooked.
Having decided on the reference set that he regards as appropriate, Professor Fisher has still to
set out the logical justification for measuring the level of significance in terms of the integral or
the sum of the separate probabilities in the tail of the relevant probability distribution. This is
a matter which has been raised by Harold Jeffreys (1948, p. 357) and again by G. A. Barnard
(1949, p. 137). Starting from the reference set which they considered appropriate, Neyman and I
arrived at the critical or rejection region for the sample point through a formulation of the alter-
natives to the null hypothesis, and as soon as these are considered in the problem of the 2 x 2
table it appears necessary to differentiate the cases (i), (ii) and (iii). Given the critical region, there
is clearly more than one numerical measure which could be associated with it. We deliberately
chose the integral or sum of the probabilities (under the null hypothesis) of the sample point falling
within the region rather than, say, the value of the ratio of likelihoods on its boundary because it
seemed to us the more relevant and meaningful measure to use. ) ‘

It seems to me that there is still a good deal here that is worth thinking over and that we shall
get no nearer to a solution of the logical problems involved by throwing up the question *‘repeated
samples from the same population?”’ and answering, in effect, ‘“what nonsense!”” We have only
to turn to D. V. Lindley’s recent paper (1953) and the discussion which followed to realize the
continued value of an unrestricted play of thought round these problems.

Professor Fisher’s next objection is to the use of such terms as the ““acceptance’ or “rejection’
of a statistical hypothesis, and “errors of the first and second kinds”. It may be readily agreed
that in the first Neyman and Pearson paper of 1928, more space might have been given to discussing
how the scientific worker’s attitude of mind could be related to the formal structure of the mathe-
matical probability theory that was introduced. Nevertheless it should be clear from the first
paragraph of this paper that we were not speaking of the final acceptance or rejection of a scientific
hypothesis on the basis of statistical analysis. We speak of accepting or rejecting a hypothesis
with a “‘greater or less degree of confidence”. Further, we were very far from suggesting that
statistical methods should force an irreversible acceptance procedure upon the experimenter.
Indeed, from the start we shared Professor Fisher’s view that in scientific enquiry, a statistical
test is “‘a means of learning”, for we remark: ‘‘the tests themselves give no final verdict, but as
tools help the worker who is using them to form his final decision”’. No doubt we could more
aptly have said “his final or provisional decision’’; even scientists, if they are employed in research
departments by industry or government, may sometimes have to give a final decision.

As already mentioned, a certain simplification of real situations and a formalization in the
verbal expression of ideas seems unavoidable when one attempts to put mathematical theory. into
gear with the way the mind works. I would agree that some of our wording may have been
chosen inadequately, but I do not think that our position in some respects was or is so very

* Unless we follow K. D. Tocher’s (1950) suggestion of adding to a a random variable uniformly
distributed in the interval (0, 1). Then, we can use a test function whose probability distribution is the
same for all the three reference sets of cases (i), (ii) and (iii).
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different from that which Professor Fisher himself has now reached. On p. 73 of his last (1955)
paper, he sets out as alternatives (@) and (b) what he thinks may be, according to the circumstances,
the worker’s attitude in a case where the test of significance applied gives no strong reason for
rejecting the null hypothesis. The phrases used, cautious though they are, are yet so relevant to
the understanding of the Neyman and Pearson approach, that I shall quote them here. The
worker is stated to express himself as follows:

(a) “The possible deviation from truth of my working hypothesis, to examine which
the test is appropriate, seems not to be of sufficient magnitude to warrant any immediate
modification.

or

(b) “The deviation is in the direction expected for certain influences which seemed
to me not improbable, and to this extent my suspicion has been confirmed; but the body
of data available so far is not by itself sufficient to demonstrate their reality”.

What ideas seem to underlie these statements? There is a recognition that the probable devia-
tions from the working hypothesis lie in a particular direction. This seems to imply that the
appropriate test is one which should be sensitive, indeed as sensitive as possible, to deviations in
that direction. If he is going to have to discard his working hypothesis, the scientist would
presumably like to be able to reach the conclusion that this is necessary.with the greatest economy
of effort in experimentation. Under these conditions, as part of the mathematical structure
which would help to determine the appropriate test (or to compare alternative tests), Neyman
and I introduced the notions of the class of admissible hypotheses and the power function of a
test. The class of admissible alternatives is formally related to the direction of probable deviations
—changes in mean, changes in variability, departure from linear regression, existence of interactions,
or what you will. The power function will help to indicate what amount of data may be required
to demonstrate the reality of specific departures from the working hypothesis.

It seems to me that continuing on the lines of statements (a) and (), we may imagine our worker
to go further and to enlarge on the term ‘“appropriate’ as follows:

(¢) “The appropriate test is one which, while involving (through the choice of its
significance level) only a very small risk of discarding my working hypothesis prematurely
will enable me to to demonstrate with assurance (but without an unnecessary amount of
experimentation) the reality of the influences which I suspect may be present’’.

If we accept (c) as a reasonable expression of attitude, it seems to follow that our worker has
among other things two balancing considerations in his mind; he wants to avoid:

(1) discarding his working hypothesis prematurely,
(2) waiting an unnecessarily long time before reaching the conclusion that suspected
factors are influencing the situation.

The formal description of this situation as involving the Scylla and Charybdis of two possible
“sources of error”, may be abhorrent to him. But perhaps, cautious as this ideal scientist is,
he would admit to a desire to avoid being wrong in a tentative opinion expressed, let us say, in an
informal discussion following another scientific colleague’s paper read before a learned society!

Professor Fisher’s final criticism concerns the use of the term ‘““inductive behaviour’; this is
Professor Neyman’s field rather than mine.
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STATISTICAL METHODS AND SCIENTIFIC INDUCTION

By Sir RoNALD FISHER

Department of Genetics, University of Cambridge

SUMMARY

THE attempt to reinterpret the common tests of significance used in scientific research
as though they constituted some kind of acceptance procedure and led to “‘decisions”
in Wald’s sense, originated in several misapprehensions and has led, apparently,
to several more.
The three phrases examined here, with a view to elucidating the fallacies they

embody, are:

(i) “Repeated sampling from the same population™,

(ii) Errors of the ‘“‘second kind”,

(iii) ““Inductive behaviour™.
Mathematicians without personal contact with the Natural Sciences have often
been misled by such phrases. The errors to which they lead are not always only
numerical.

1. Introduction

DuRrING the present century a good deal of progress seems to have been made in the business of
interpreting observational data, so as to obtain a better understanding of the real world. The
three aspects of principle importance for this progress have been, first, the use of better mathe-
matics and more comprehensive ideas in mathematical statistics; leading to more correct or exact
methods of calculation, applied to the given body of data (a unique sample in the language of
W. S. Gosset, writing under the name of ““Student’’) which comprehends all the numerical informa-
tion available on the topic under discussion. Secondly, as methods of summarizing and drawing
correct conclusions approached adequacy, the wide subject of experimental design was opened
up, aimed at obtaining data more complete and precise, and at avoiding waste of effort in the
accumulation of ill-planned, indecisive, or irrelevent observations. Thirdly, as a natural or even
inevitable concomitant of the first two, a more complete understanding has been reached of the
structure and peculiarities of inductive logic—that is of reasoning from the sample to the popula-
tion from which the sample was drawn, from consequences to causes, or in more logical terms,
from the particular to the general.

Much that T have to say will not command universal assent. I know this for it is just because
I find myself in disagreement with some of the modes of exposition of this. new subject which
have from time to time been adopted, that I have taken this opportunity of expressing a different
point of view; different in particular from that expressed in numerous papers by Neyman, Pearson
Wald and Bartlett. There is no difference to matter in the field of mathematical analysis, though
different numerical results are arrived at, but there is a clear difference in logical point of view,
and I owe to Professor Barnard of The Imperial College the penetrating observation that this
difference in point of view originated when Neyman, thinking that he was correcting and improving
my own early work on tests of significance, as a means to the ‘“‘improvement of natural know-
ledge”, in fact reinterpreted them in terms of that technological and commercial apparatus which
is known as an acceptance procedure.

Now, acceptance procedures are of great importance in the modern world. When a large
concern like the Royal Navy receives material from an engineering firm it is, I suppose, subjected
to sufficiently careful inspection and testing to reduce the frequency of the acceptance of faulty
or defective consignments. The instructions to the Officers carrying out the tests must also, I
conceive, be intended to keep low both the cost of testing and the frequency of the rejection of
satisfactory lots. Much ingenuity and skill must be exercised in making the acceptance procedure
a really effectual and economical one. I am casting no contempt on acceptance procedures, and
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I am thankful, whenever I travel by air, that the high level of precision and reliability required
can really be achieved by such means. But the logical differences between such an operation
and the work of scientific discovery by physical or biological experimentation seem to me so
wide that the analogy between them is not helpful, and the identification of the two sorts of opera-
tion is decidedly misleading.

I shall hope to bring out some of the logical differences more distinctly, but there is also, I
fancy, in the background an ideological difference. Russians are made familiar with the ideal
that research in pure science can and should be geared to technological performance, in the com-
prehensive organized effort of a five-year plan for the nation. How far, within such a system,
personal and individual inferences from observed facts are permissible we do not know, but it
may be safer, and even, in such a political atmosphere, more agreeable, to regard one’s scientific
work simply as a contributary element in a great machine, and to conceal rather than to advertise
the selfish and perhaps heretical aim of understanding for oneself the scientific situation. In
the U.S. also the great importance of organized technology has I think made it easy to confuse
the process appropriate for drawing correct conclusions, with those aimed rather at, let us say,
speeding production, or saving money. There is therefore something to be gained by at least
being able to think of our scientific problems in a language distinct from that of technological
efficiency.

1 believe I can best illustrate the contrast I want to make clear by taking a few current phrases
which are foreign to my own point of view, and after examining these, by setting out in a more
constructive spirit, some of the special characteristics of inductive reasoning. The phrases I
should choose for the fallacies they embody are:

(1) Repeated sampling from the same population.
(ii) Errors of the ‘“‘second kind”.
(iii) “Inductive behaviour™.

But first I must exemplify the extent to which divergence in language has been carried by quoting
some rather simple phrases from Wald’s book on Decision Functions.

On the outside of the cover we read, “‘Particularly noteworthy is the treatment of experiment
design as a part of the general decision problem”.

On the inside, ‘“The design of experimentation is made a part of the general decision problems—
a major advance beyond previous results”, and in the first paragraph of the author’s preface
“A major advance beyond previous results is the treatment of the design of experimentation as a
part of the general decision problem”.

These claims seem very much like an afterthought, of a kind which is sometimes suggested by
a publisher; for, apart from these three quotations, the design of experiments is scarcely mentioned
in the rest of the book. For example, the index does not contain the word ‘‘replication”, or
“control”, or ‘“‘randomization”; there is no discussion of the functions and purposes of these
three elements of design. Of authorities, the bibliography does not contain the names of Yates,
of Finney, or of Davies; or, on the other side of the Atlantic, of Goulden, who was the first of
transatlantic writers on the design of experiments, or of Cochran and Cox. My own book is
indeed mentioned, but no use seems to have been made of it. The obvious inference is that Wald
was quite unaware of the nature and scope of the subject of experimental design, but had simply
assumed that it must be included in that of acceptance procedures, to which his book is devoted.
Rather similar, equally innocent and unfounded presumptions, have been not uncommon in the
last twenty years. They would scarcely have been possible without that insulation from all living
contact with the natural sciences, which is a disconcerting feature of many mathematical depart-
ments. ’

The first questionable phrase and the one responsible for the greatest amount of numerical
error is:

2. “Repeated Sampling from the Same Population”

The operative properties of an acceptance procedure, single or sequential, are ascertained
practically or conceptually by applying it to a series of successive similar samples from the same
source of supply, and determining the frequencies of the various possible results. It is doubtless
in consequence of this that it has been thought, and frequently asserted, that the validity of a
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test of significance is to be judged in the same way. However, a rather large number of examples
are now known in which this rule is seen to be misleading. The root of the difficulty of carrying
over the idea from the field of acceptance procedures to that of tests of significance is that, where
acceptance procedures are appropriate, the source of supply has an objective reality, and the
population of lots, or one or more, which could be successively chosen for examination is uniquely
defined; whereas if we possess a unique sample in student’s sense on which significance tests
are to be performed, there is always, as Venn (1876) in particular has shown, a multiplicity of
populations to each of which we can legitimately regard our sample as belonging; so that the
phrase ‘“‘repeated sampling from the same population” does not enable us to determine which
population is to be used to define the probability level, for no one of them has objective reality,
all being products of the statistician’s imagination. In respect of tests of significance, therefore,
there is need for further guidance as to how this imagination is to be exercised. In fact a careful
choice has to be made, based on an understanding of the question or questions to be answered.
By ignoring this necessity a ‘‘theory of testing hypotheses” has been produced in which a primary
requirement of any competent test has been overlooked.

Consider the case of simple linear regression. Let us suppose that the numerical data consist
of N pairs of values (x, y), while the qualitative data tell us that for each value of x the variate
y is normally distributed with variance ¢ about a mean given by

YE Ew(y) = + xﬁ, Em(y - Y)2 == 62,

being a linear function of the variate x. The qualitative data may also tell us how x is distributed,
with or without specific parameters; this information is irrelevant.

In such cases the unknown parameter, 3, may be estimated and the precision of estimation
determined by a standard and well known procedure; let

A=8x—5% B=Sx—00y—7p, C=50—p~
Then we may take as our estimate of 8 the statistic

b= B/A,
and of o? the statistic
s? = (C — B%*A) ~ (N — 2).

For samples having the same value A it is easy to show that the estimate b is normally distributed
about B with variance ¢2/A4, so that we have a typical analysis of variance:

d.f. Sum of Squares Mean Square
1 A — By AB — B)
N—2 C — B4 s?

and the significance of the deviation of b from zero, or any other proposed value of B, is a simple
t-test with N — 2 degrees of freedom, with

1= po VA,

where B, is the theoretical value proposed for comparison.

I do not believe that anyone doubts the validity of this simple test. It does, however, violate
the rule of determining levels of significance by frequencies of occurrence of the proposed events
in repeated samples from the same population: For if a succession of sets of N pairs of observa-
tions (x, y) were taken from the same population, the value of 4 would not be the same for each
set. Consequently, the frequency distribution of » — B in the aggregate of all such sets would
not be the same as that which I have calculated taking 4 constant, and would indeed be unknown
until the sampling variation of 4 were investigated. In reality, therefore, no one uses the rule of
determining the level of significance by successive sampling from the population of @/l random
samples of N pairs of values, but, ever since the right approach was indicated (Fisher 1922), the
selection of all random samples having a constant value 4, equal to that actually observed in the
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sample under test, is what has in fact been used. The normal distribution of » about 8 with variance
o%/A does not correspond with any realistic process of sampling for acceptance, but to a popula-
tion of samples in all relevant respects like that observed, neither more precise nor less precise,
and which therefore we think it appropriate to select in specifying the precision of the estimate,
b. 1In relation to the estimation of B the value A is known as an ancillary statistic. Had it been
necessary we should not have hesitated to specify all values of x (x;, ... , xp) individually,
but this would have made no difference once the comprehensive value 4 had been specified.

The confusion introduced, even in the case of the most fundamental and logically simple of
tests of significance, by the introduction of the notion of basing the test on repeated sampling
from the same population, is well illustrated by some episodes, which ought not to be forgotten,
in the curious history of testing proportionality in a two-by-two table.

In the solution of the problem of the 2 X 2 table, put forward concurrently by Dr. F. Yates
and myself in 1934, the essential point was the recognition that the probabilities of occurrence
of different possible tables, having the same marginal totals

a b | a+b
c d | e+d
|
a+c b+d l n
were proportional simply to
lla!'b'!c!d!

where a, b, ¢ and d are the four frequencies observed in the double dichotomy, whatever might
be the probabilities governing the marginal distributions. Within sets of tables having the same
margins, therefore, each may be assigned an absolute probability:

@+bdl@a+a)!bd+d!(c+ad! 1
n! ‘alblc!d!

where the new factor depends only on the margins and not on the contents.

In this case the margins of the table, which by themselves supply no information as to the
proportionality of the contents, do, like the value 4 in the regression example, determine how
much information the contents will contain. The reasonable principle that in testing the signi-
ficance with a unique sample, we should compare it only with other possibilities in all relevant
respects like that observed, will lead us to set aside the various possible tables having different
margins, the relative frequencies of which must depend on unknown factors of the population
sampled.

On two occasions in the intervening twenty years distinguished statisticians have attempted
to bring into the account populations of fourfold tables not having fixed margins. In both cases,
such is the reasonableness of human nature in favourable cases, the authors of these innovations
withdrew them after some discussion, and expressed themselves as completely satisfied that the-
apparent advance they had made was illusory. The first was Professor E. B. Wilson of the Harvard
School of Public Health, writing in Science in 1941, and later taking occasion to expound the
method of Fisher and Yates in two papers in the Proceedings of the National Academy of Sciences
in the following year. The second case was that of Professor Barnard, who started on the assump-
tion that the method expounded by Neyman and Pearson could be relied on, and in the first flush
of success reported a test using the language of that theory ‘“much more powerful than Fisher’s”,
but who also, after some discussion, had the generosity to go out of his way to explain that further
meditation had led him to the conclusion that Fisher was right after all.

Professor Barnard has a keen and highly trained mathematical mind, and the fact that he was
misled into much wasted effort and disappointment should be a warning that the theory of testing
hypotheses set out by Neyman and Pearson has missed at least some of the essentials of the prob-
lem, and will mislead others who accept it uncritically. Indeed, in the matter of Behren’s test
for the significance of the difference between the means of two small samples, objection was taken
on exactly the ground that the significance level is not the same as the frequency found on repeated
sampling.
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The examples I have given from simpler problems show clearly that it should never have been
put forward in the field of significance tests, though perhaps perfectly appropriate to acceptance
sampling.

3. Errors of the ““Second Kind”

The phrase “Errors of the second kind”, although apparently only a harmless piece of tech-
nical jargon, is useful as indicating the type of mental confusion in which it was coined.

In an acceptance procedure lots will sometimes be accepted which would have been rejected
had they been examined fully, and other lots will have been rejected when, in this sense, they ought
to have been accepted. A well-designed acceptance procedure is one which attempts to minimize
the losses entailed by such events. To do this one must take account of the costliness of each
type of error, if errors they should be called, and in similar terms of the costliness of the testing
process; it must take account also of the frequencies of each type of event. For this reason
probability a priori, or rather knowledge based on past experience, of the frequencies with which
lots of different quality are offered, is of great importance; whereas, in scientific research, or in
the process of “learning by experience”, such knowledge a priori is almost always absent or
negligible.

Simply from the point of view of an acceptance procedure, though we may by analogy think
of these two kinds of events as “‘errors” and recognize that they are errors in opposite directions,
I doubt if anyone would have thought of distinguishing them as of two kinds, for in this milieu
they are essentially of one kind only and of equal theoretical importance. It was only when the
relation between a test of significance and its corresponding null hypothesis was confused with
an acceptance procedure that it seemed suitable to distinguish errors in which the hypothesis is
rejected wrongly, from errors in which it is “accepted wrongly” as the phrase does. The frequency
of the first class, relative to the frequency with which the hypothesis is true, is calculable, and
therefore controllable simply from the specification of the null hypothesis. The frequency of
the second kind must depend not only on the frequency with which rival hypotheses are in fact
true, but also greatly on how closely they resemble the null hypothesis. Such errors are there-
fore incalculable both in frequency and in magnitude merely from the specification of the null
hypothesis, and would never have come into consideration in the theory only of tests of significance,
had the logic of such tests not been confused with that of acceptance procedures.

It may be added that in the theory of estimation we consider a continuum of hypotheses each
eligible as null hypothesis, and it is the aggregate of frequencies calculated from each possibility
in turn as true—including frequencies of error, therefore only of the ““first kind”, without any
assumptions of knowledge a priori—which supply the likelihood function, fiducial limits, and
other indications of the amount of information available. The introduction of allusions to errors
of the second kind in such arguments is entirely formal and ineffectual.

The fashion of speaking of a null hypothesis as “‘accepted when false”, whenever a test of signifi-
cance gives us no strong reason for rejecting it, and when in fact it is in some way imperfect, shows
real ignorance of the research workers’ attitude, by suggesting that in such a case he has come
to an irreversible decision.

The worker’s real attitude in such a case might be, according to the circumstances:

(@) “The possible deviation from truth of my working hypothesis, to examine which the test
is appropriate, seems not to be of sufficient magnitude to warrant any immediate modification.”
Or it might be:

(b) “The deviation is in the direction expected for certain influences which seemed to me
not improbable, and to this extent my suspicion hds been confirmed; but the body of data available
so far is not by itself sufficient to demonstrate their reality.”

These examples show how badly the word “‘error” is used in describing such a situation. More-
over, it is a fallacy, so well known as to be a standard example, to conclude from a test of signifi-
cance that the null hypothesis is thereby established; at most it may be said to be confirmed or
strengthened.

In an acceptance procedure, on the other hand, acceptance is irreversible, whether the evidence
for it was strong or weak. It is the result of applying mechanically rules laid down in advance;
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no thought is given to the particular case, and the tester’s state of mind, or his capacity for learning,
is inoperative.

By contrast, the conclusions drawn by a scientific worker from a test of significance are pro-
visional, and involve an intelligent attempt to understand the experimental situation.

4. “Inductive Behaviour”

The erroneous insistence on the formula of ‘“‘repeated sampling from the same population”
and the misplaced emphasis on “‘errors of the second kind” seem both clearly enough to flow
from the notion that the process by which experimenters learn from their experiments might be
equated to some equivalent acceptance procedure. The same confusion evidently takes part in
the curious preference expressed by J. Neyman for the phrase ‘“‘inductive behaviour” to replace
what he regards as the mistaken phrase ‘“‘inductive reasoning”.

Logicians, in introducing the terms ‘‘inductive reasoning” and ‘““inductive inference” evidently
imply that they are speaking of processes of the mind falling to some extent outside those of which
a full account can be given in terms of the traditional deductive reasoning of formal logic. Deduc-
tive reasoning in particular supplies no essentially new knowledge, but merely reveals or unfolds
the implications of the axiomatic basis adopted. Ideally, perhaps, it should be carried out
mechanically. It is the function of inductive reasoning to be used, in conjunction with observa-
tional data, to add new elements to our theoretical knowledge. That such a process existed,
and was possible to normal minds, has been understood for centuries; it is only with the recent
development of statistical science that an analytic account can now be given, about as satisfying
and complete, at least, as that given traditionally of the deductive processes.

When, therefore, Neyman denies the existence of inductive reasoning he is merely expressing
a verbal preference. For him ‘‘reasoning” means what ‘“deductive reasoning’ means to others.
He does not tell us what in his vocabulary stands for inductive reasoning, for he does not clearly
understand what that is. What he tells us to call “inductive behaviour” is merely the practice
of making some assertion of the form

T<9

in some circumstances, and refraining from this assertion in others. This is evidently an effort to
assimilate a test of significance to an acceptance procedure. From a test of significance, however,
we learn more than that the body of data at our disposal would have passed an acceptance test
at some particular level; we may learn, if we wish to, and it is to this that we usually pay atten-
tion, at what level it would have been doubtful; doing this we have a genuine measure of the
confidence with which any particular opinion may be held, in view of our particular data. From
a strictly realistic viewpoint we have no expectation of an unending sequence of similar bodies of
data, to each of which a mechanical “yes or no” response is to be given. What we look forward
to in science is further data, probably of a somewhat different kind, which may confirm or elaborate
the conclusions we have drawn; but perhaps of the same kind, which may then be added to what
we have already, to form an enlarged basis for induction.

Neyman reinforces his choice of language by arguments much less defensible. He seems to
claim that the statement (a) “0 has a probability of 5 per cent. of exceeding 7 is a different state-
ment from (b) ““T has a probability of 5 per cent. of falling short of 6”. Since language is meant
to be used I believe it is essential that such statements, whether expressed in words or symbols,
should be recognized as equivalent, even when 0 is a parameter, defined as an objective character
of the real world, entering into the specification of our hypothetical population, whilst 7 is directly
calculable from the observations. To prevent the kind of confusion that Neyman has introduced
we may point out that both statements are statements of the relationship in which 7, or 0, stands
to the other. Also, since probability is specified, the statements have meaning only in relation
to a sufficiently well-defined population of pairs of these values. The statements do not imply
that in this population of pairs of values either T or 6 is constant, but also they do not exclude the
possibility that one should be constant, and that variability should be confined to the other.
Reference to the mode of calculating our limits in an ordinary test of significance will generally
establish that in these calculations the parameter 6 has been treated provisionally as constant, and
variations calculated of T for given 6. The possible variation of 0 is left arbitrary, and is irrelevant
to the calculations, much as is the distribution of the independent variate in the regression problem,
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A complementary doctrine of Neyman violating equally the principles of deductive logic is to
accept a general symbolical statement such as

Prix —t) < p< X+ t)}= o,

as rigorously demonstrated, and yet, when numerical values are available for the statistics % and s>
so that on substitution of these and use of the 5 per cent. value of #, the statement would read

Pr{92-99 < u < 93-01} = 95 per cent.,

to deny to this numerical statement any validity. This evidently is to deny the syllogistic process
of making a substitution in the major premise of terms which the minor premise establishes as
equivalent. By this, which is surely a desperate measure, Neyman supports the assertion that
if u stand for some objective constant of nature, or property of the real world, such as the distance
of the sun, its probability of lying between any named numerical limits is necessarily either O or 1,
and we cannot know which, unless the true distance is known to us. The paradox is rather
childish, for it requires that we should wilfully misinterpret the probability statement so as to
pretend that the population to which it refers is not defined by our observations and their preci-
sion, but is absolutely independent of them. As this is certainly not what any astronomer means,
and is not in accordance with the origin of the statement he makes, it seems rather like an ack-
nowledgement of bankruptcy to pretend that it is.

Finally let me add some notes on what appear to me to be distinctive requirements of valid
inductive inference.

S. Requirements of Inductive Inferences

(@) Since some inductive inferences are expressed in terms of probability (fiducial probability)
the first requirement is a clear understanding that probability statements always have reference
to some sufficiently defined population, and never to individuals, save as typical members of such
a population. This understanding is needed for deductive inferences also, when statements of
probability are made.

(b) A very important feature of inductive inference, unknown in the field of deductive inference,
is the framing of the hypothesis in terms of which the data are to be interpreted. This hypothesis
must fulfill several requirements: (i) it must be in accordance with the facts of nature as so far
known; (ii) it must specify the frequency distribution of all observational facts included in the
data, so that the data as a whole may be taken as a typical sample; (iii) it must incorporate as
parameters all constants of nature which it is intended to estimate, in addition possibly to special,
or ad hoc, parameters; (iv) it must not be contradicted, in any way judged relevant, by the data
in hand. If it satisfies these conditions it is therefore a scientific construct of a fairly elaborate
type. It is by no means obvious that different persons should not put forward different successful
hypotheses, among which the data can supply little or no discrimination. The hypothesis is
sometimes called a model, but I should suggest that the word model should only be used for aspects
of the hypothesis between which the data cannot discriminate. As an act of construction the
hypothesis is not altogether impersonal, for the scientist’s personal capacity for theorizing comes
into it; moreover, the criteria by which it is approved require a certain honesty, or integrity, in
their application.

(¢) In one respect inductive reasoning is more strict than is deductive reasoning, since in the
latter any item of the data may be ignored, and valid inferences may be drawn from the rest;
i.e. from any selected sub-set of the set of axioms used, whereas in inductive inference the whole
of the data must be taken into account. This seems to be very difficult to be understood by
workers trained in deductive methods only, though more easily understood by statisticians. The
political principle that anything can be proved by statistics arises from the practice of presenting
only a selected sub-set of the data available.

In some early results of my own I rely on the datum ‘““There is no knowledge of probabilities
a priori”. They would not certainly have been legitimate without this datum, but they have
been mistakenly described as a kind of greatest common factor of the inferences which could
be drawn for different possible data giving probabilities a priori.
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It is revealing that this logical distinction was overlooked by Neyman and Pearson, in 1933,
in one of their earliest papers after they had learnt of the possibility of inferring fiducial limits,
the argument for which I had set out in a paper on inverse probability in the Proceedings of the
Cambridge Philosophical Society, 1930. It is particularly instructive that although in that paper
I speak of “learning by experience”, of “‘inductive processes”, and of ‘“‘the probability of causes”,
much as others had done since the eighteenth century, these authors read into my work ‘‘rules of
behaviour”, which indeed I had not mentioned at all. Both misapprehensions become intelligible
if we realise that the authors had no idea of a test of significance as a means of learning, but con-
ceived it only under the form of an acceptance procedure. The passage is as follows:

“In a recent paper [(Neyman & Pearson, 1933b)] we have discussed certain general principles
underlying the determination of the most efficient tests of statistical hypotheses, but the method
of approach did not involve any detailed consideration of the question of a priori probability.
We propose now to consider more fully the bearing of the earlier results on this question and in
particular to discuss what statements of value to the statistician in reaching his final judgement
can be made from an analysis of observed data, which would not be modified by any change in
the probabilities a priori. In dealing with the problem of statistical estimation, R. A. Fisher
has shown how, under certain conditions, what may be described as rules of behaviour can be
employed which will lead to results independent of these probabilities; in this connection he
has discussed the important conception of what he terms fiducial limits.®- ®. But the testing of
statistical hypotheses cannot be treated as a problem in estimation, and it is necessary to discuss
afresh in what sense tests can be employed which are independent of a priori laws.”

There seems here an entirely genuine inability to conceive that when new data are added in
an inductive problem, previously correct conclusions are no longer correct. Or, in this case
that the conclusions proper to the absence of knowledge of probabilities a priori would be wrong
for almost any set of such probabilities, and could in no sense be a common term in the proper
inferences from all such sets. :

(d) Variety of logical form.

A fourth feature which has emerged in the study of inductive inference is that data of apparently
the same logical form, though with different mathematical specification, give rise to inferences
not always of the same logical form.

For example, when in 1930 I introduced the notions of the fiducial distribution and fiducial
limits I did so with the example of the sampling distribution of the estimated correlation coefficient
r for various values of the true correlation p. The distribution of r is continuous between the
limits — 1 and + 1, and for any value of P there is a value of r, which may be called rp(p), such
that » exceeds it with frequency 1 — P, and falls short of it with frequency P. These functions
of p increase monotonically from — 1 to -+ 1 as p passes from — 1 to + 1. Consequently, cor-
responding with any observed value r, there is a value of p, which may be denoted as p; — p(r)
such that for this value of p the observed value will fall short of r with frequency P and exceed
it with frequency 1 — P. In fact if P is expressed as an explicit function

P=FN(", P)

such that the distribution of r for given ¢ is given by the frequency element
then the distribution

will be the fiducial distribution of p for given r, in the sense that the frequency of exceeding any
chosen value of ¢ is the frequency, for that value of p, of » being less than the value observed.
The quantiles of this distribution thus give the fiducial limits of ¢ at any chosen level of significance.

Had I taken a discontinuous variate, such as the number of successes observed out of N trials,
and sought in terms of the observations to obtain a fiducial distribution for the true probability,
(say x), it would certainly have been possible to find a value of x such that the probability of the
number of successes observed, or any higher number was, let us say 5 per cent., so that smaller
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values of x could be rejected at least at the 5 per cent. level of significance; but this gives only
an inequality statement for the probability that x is less than any given value. Neyman seems to
ignore this distinction, and to speak in both cases of confidence limits. Logically, however, the
form of inference admissible is totally distinct.

Equally, statements of fiducial probability in continuous cases are only proper if the whole
of the information is utilized, as it is by the use of sufficient estimates, whereas for any test of
significance, however low in power, it may well be possible to point to the limits outside which
parametric values are significantly contradicted by the data at a given level of significance. These
also should be regarded as giving only rough statements for the fiducial probability.

There are other cases in the theory of estimation in which rather similar data yield information
of remarkably different kinds. Consider, for example, the case in which x and y are two observ-
ables distributed in normal distributions with unit variance in each case, and independently,
about hypothetical means £ and n. No situation could be simpler. Suppose, however, that the
data contain a functional relationship connecting £ and n. Then different cases arise from different
functional forms:

(i) If there is a simple linear connection between & and =, so that (£, ) represents a point on a
given straight line, then the foot of the perpendicular from the observation point (x, ) is a suffi-
cient estimate, and the fiducial distribution of (£, v) on the given line will be a normal distribution
with unit variance about this estimate. All possible observations on the same perpendicular
are equivalent.

(i) If the given locus of (€, 7) is a circle, there is no sufficient estimate; the distance of (x, )
from the centre of the given circle is, however, an ancillary statistic, which together with the maxi-
mum likelihood estimate makes the estimation exhaustive. For each possible distance an appro-
priately oriented fiducial distribution on the circle may be specified.

(iii) In general there is a well defined likelihood function, and therefore an estimated point
of maximum likelihood. It is not obvious that any general substitute can be found for the ancillary
statistic, save in an asymptotic sense, or that any statement of fiducial probability is possible in
general. Thus three logically distinct types of inference arise from simple changes in the mathe-
matical specification of the problem.

(e) Finally, in inductive inference we introduce no cost functions for faulty judgements, for
it is recognized in scientific research that the attainment of, or failure to attain to, a particular
scientific advance this year rather than later, has consequences, both to the research programme,
and to advantageous applications of scientific knowledge, which cannot be foreseen. In fact,
scientific research is not geared to maximize the profits of any particular organization, but is
rather an attempt to improve public knowledge undertaken as an act of faith to the effect that,
as more becomes known, or more surely known, the intelligent pursuit of a great variety of aims,
by a great variety of men, and groups of men, will be facilitated. We make no attempt to evaluate
these consequences, and do not assume that they are capable of evaluation in any sort of currency.

When decision is needed it is the business of inductive inference to evaluate the nature and
extent of the uncertainty with which the decision is encumbered. Decision itself must properly
be referred to a set of motives, the strength or weakness of which should have had no influence
whatever on any estimate of probability. We aim, in fact, at methods of inference which should
be equally convincing to all rational minds, irrespective of any intentions they may have in utilizing
the knowledge inferred.

We have the duty of formulating, of summarising, and of communicating our conclusions,
in intelligible form, in recognition of the right of other free minds to utilize them in making their
own decisions.
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