Error Statistics and Learning From Error: Making a Virtue of Necessity

Deborah G. Mayo†‡
Virginia Tech

The error statistical account of testing uses statistical considerations, not to provide a measure of probability of hypotheses, but to model patterns of irregularity that are useful for controlling, distinguishing, and learning from errors. The aim of this paper is (1) to explain the main points of contrast between the error statistical and the subjective Bayesian approach and (2) to elucidate the key errors that underlie the central objection raised by Colin Howson at our PSA 96 Symposium.

1. Introduction.

The two main attitudes held to-day towards the theory of probability both result from an attempt to define the probability number scale so that it may readily be put in gear with common processes of rational thought. For one school, the degree of confidence in a proposition . . . provides the basic notion to which the numerical scale should be adjusted. The other school notes how in ordinary life a knowledge of the relative frequency of occurrence of a particular class of events in a series of repetitions has again and again an influence on conduct; it therefore suggests that it is through its link with relative frequency that a numerical probability measure has the most direct meaning for the human mind. (Pearson 1950, 228)

The two main attitudes of which Pearson here speaks correspond to two distinct views of the task of a theory of statistics: the first we may call the evidential-relation (E-R) view, and the second, the error statistical view. This difference corresponds to fundamental differences in the idea of how probabilistic considerations enter in scientific inference

†Department of Philosophy, Virginia Tech, Blacksburg, VA 24061; mayod@vt.edu.
‡I thank E. L. Lehmann for several important error statistical insights.
and thereby in the goal of philosophy of statistics. Evidential-relationship approaches grew quite naturally from what was traditionally thought to be required by a "logic" of confirmation or induction. Most commonly, such approaches seek quantitative measures of the bearing of evidence on hypotheses. What I call error statistical approaches, in contrast, focus their attention on finding general methods or procedures of testing with certain good properties.

In the E-R view, the task of a theory of statistics is to say, for given evidence and hypotheses, how well evidence confirms or supports hypotheses (whether absolutely or comparatively). In this view, the role of statistics is that of furnishing a set of formal rules or a "logic" relating given evidence to hypotheses. The dominant example of such an approach on the contemporary philosophical scene is based on one or another Bayesian measure of support or confirmation. With the Bayesian approach, what we have learned about a hypothesis H from evidence e is measured by the conditional probability of H given e using Bayes's theorem. The cornerstone of the Bayesian approach is the use of prior probability assignments to hypotheses, generally interpreted as an agent's subjective degrees of belief.

In contrast, the methods and models of classical and Neyman-Pearson statistics (e.g., statistical significance tests, confidence interval methods) are primary examples of error probability approaches. These eschew the use of prior probabilities where these are not based on objective frequencies. Probability enters instead as a way of characterizing the experimental or testing process itself; to express how reliably it discriminates between alternative hypotheses and how well it facilitates learning from error. These probabilistic properties of experimental procedures are error probabilities.

Several familiar uses of statistics that we read about daily are based on error statistical methods and models: in polls inferring that the proportion likely to vote for a given candidate equals p% plus or minus some percentage points, in reports of statistically significant differences between treated and control groups, in data analyses in physics, astronomy and elsewhere in order to distinguish "signal" from "noise." Despite the prevalence of error statistical methods in scientific practice, the Bayesian Way has been regarded as the model of choice among philosophers looking to statistical methodology. By and large, philosophers of science who consult philosophers of statistics receive the impression that all but Bayesian statistics is discredited.

Jerzy Neyman (co-developer of Neyman and Pearson methods) expressed surprise at the ardor with which subjectivists attacked Neyman-Pearson tests and confidence interval estimation methods back in the 1970s:
I feel a degree of amusement when reading an exchange between an authority in 'subjectivistic statistics' and a practicing statistician, more or less to this effect:

The Authority: ‘You must not use confidence intervals; they are discredited!’

Practicing Statistician: ‘I use confidence intervals because they correspond exactly to certain needs of applied work.’ (Neyman 1977, 97)

Neyman’s remarks hold true today. The subjective Bayesian is still regarded, in many philosophy of science circles, as “the authority” in statistical inference, and scientists from increasingly diverse fields still regard NP methods as corresponding exactly to their needs.

It may seem surprising, given the current climate in philosophy of science, to find philosophers (still) declaring invalid a standard set of experimental methods, rather than trying to understand or explain why scientists evidently (still) find them so useful. I think it is surprising. In any event, I believe it is time to remedy the situation. A genuinely adequate philosophy of experimental inference will only emerge if it is not at odds with statistical practice in science.

My position is that the error statistical approach is at the heart of the widespread applications of statistical ideas in scientific inquiry, and that it offers a fruitful basis for a philosophy of experimental inference. Although my account builds upon several methods and models from classical and Neyman-Pearson (NP) statistics, it does so in ways that depart sufficiently from what is typically associated with these approaches as to warrant some new label. Nevertheless, I retain the chief feature of Neyman-Pearson methods—the centrality of error probabilities—hence the label “error-statistics.”

Colin Howson (this issue) argues that error probabilistic methods are in error. After all, scrutinizing an experimental result by considering the error probabilities of the procedures that produced it is anathema to Bayesians, considering as it does outcomes other than the one actually observed. But this just brings out a key point at which the error statistician is at loggerheads with the Bayesian, and is not an argument that the Bayesian Way offers a better account of experimental learning in science. Granting that a very strict (behavioristic) construal of the NP approach—where all that matters is low error rates in the long run—can seem to license counterintuitive inferences, I have sought to erect an error statistical approach that avoids them. In addition to solving a cluster of problems and misinterpretations, this approach attempts to set out a conception of experimental inquiry in which the error statistical tools provide us with just the tools we need for learning in the face of error.
2. A Fundamental Difference in Aims. The error statistical approach seeks tools that can cope with the necessary limitations, and the inevitable slings and arrows, of actual experimental inquiry. The subjective Bayesian upholds a different standard of virtue. Take the very definition of inductive logic, stated by Howson and Urbach:

Inductive logic—which is how we regard the subjective Bayesian theory—is the theory of inference from some exogenously given data and prior distribution of belief to a posterior distribution. (1989, 290)

Inductive inference from evidence is a matter of updating one’s degree of belief to yield a posterior degree of belief (via Bayes’s theorem). Where does one get the prior probabilities and the likelihoods required to apply Bayes’s theorem? Howson and Urbach (1989, 273) reply that “we are under no obligation to legislate concerning the methods people adopt for assigning prior probabilities. These are supposed merely to characterise their beliefs subject to the sole constraint of consistency with the probability calculus.” What about the grounds for accepting the statements of evidence? Just as with arriving at prior probabilities, the evidence is something you need to start out with:

The Bayesian theory we are proposing is a theory of inference from data; we say nothing about whether it is correct to accept the data... The Bayesian theory of support is a theory of how the acceptance as true of some evidential statement affects your belief in some hypothesis. How you came to accept the truth of the evidence, and whether you are correct in accepting it as true, are matters which, from the point of view of the theory, are simply irrelevant. (Howson and Urbach 1989, 272, emphasis added)

This conception of inductive inference no doubt has its virtues. It has the simplicity and cleanness of a deductive logic, virtues that, admittedly, are absent from the error statistician’s view of things.

Error statisticians willingly forgo grand and unified schemes for relating their beliefs, preferring a hodgepodge of methods that let them set sail with the kind of information they actually tend to have. Error statisticians appeal to statistical tools as protection from the many ways they know they can be misled by data as well as by their own beliefs and desires. The value of statistical tools for them is to develop strategies that capitalize on their knowledge of mistakes: strategies for collecting and modeling data, for efficiently checking an assortment of errors, and for communicating results in a form that promotes their scrutiny and their extension by others. Once it is recognized that there is a big difference between our aims, we can agree to disagree with
subjective Bayesians as to what virtues our account of scientific inference should possess. Let me highlight some aspects of the error statistical approach that I regard as virtues.

To begin with, rather than starting its work with evidence or data (as Bayesian and other evidential-relationship accounts do), our error statistical approach includes the task of arriving at data—a task that it recognizes as calling for its own inferences. A second point of contrast is that we do not seek to equate the scientific inference with a direct application of some statistical inference scheme.

For example, philosophers often suppose that to apply NP statistics in philosophy of science, scientific inference must be viewed as a matter of accepting or rejecting hypotheses according to whether outcomes fall in acceptance or rejection regions of NP tests. Finding examples where this kind of automatic "accept-reject rule" distorts scientific inference, it is concluded that NP statistics is inappropriate for building an account of inference in science. This conclusion is unwarranted because it overlooks the ways in which these methods are actually used in science. What I am calling the error statistical account, I believe, reflects these actual uses, and shows what is behind the claim of Neyman's scientist, that these methods correspond precisely to certain needs of applied work.

2.1. A Framework of Inquiry. To get at the use of these methods in science, I propose that experimental inference be understood within a framework of inquiry. You cannot just throw some "evidence" at the error statistician and expect an informative answer to the question of what hypothesis it warrants. But neither does the error statistician need to begin with neat and tidy data to get started. A framework of inquiry incorporates methods of experimental design, data generation, modeling, and testing. For each experimental inquiry we can delineate three types of models: models of primary scientific hypotheses (or questions), models of data, and models of experiment.¹

A substantive scientific inquiry is to be broken down into one or more local or "topical" hypotheses that make up the primary questions or problems of separate inquiries.² Typically, primary problems take the form of estimating quantities of a model or theory, or of testing hypothesized values of these quantities. These local problems often correspond to questions framed in terms of one or more standard or

¹. This is akin to the delineation of a hierarchy of models proposed by Patrick Suppes (1969).
². The term "topical hypotheses" is coined by Hacking (1992). Like topical creams, they are to be contrasted with deeply penetrating theories.
canonical errors: about parameter values, about causes, about accidental effects, and about assumptions involved in testing other errors. The experimental models serve as the key linkage models connecting the primary model to the data, links that require, not the raw data itself, but appropriately modeled data.

2.2 A Piecemeal Account of Testing. In the error statistical account, formal statistical methods relate to experimental hypotheses, hypotheses framed in the experimental model of a given inquiry. Relating inferences about experimental hypotheses to primary scientific claims is, except in special cases, a distinct step. Yet a third step is called for to link raw data to data models—the real material of experimental inference. So, for example, an inference from data to a primary hypothesis may fail to be warranted either because the experimental inference that is licensed fails to answer the primary question, or it may fail because the assumptions of the experimental data are not met sufficiently by the actual data. In short, there is a sequence of errors that this account directs you to check and utilize along the way, in a kind of piecemeal approach.

Now Howson charges (in unpublished comments for our PSA symposium) that I am “promoting a methodology of piecemeal testing . . . in an attempt to save the game . . . this is merely making a virtue out of necessity” (emphasis mine). I accept this charge, for it is a game well worth saving. Where data are inexact, noisy, and incomplete, where extraneous factors are uncontrolled or physically uncontrollable, we simply cannot aspire to the virtues the Bayesian theory demands. We do not have an exhaustive list of hypotheses and probabilities on them, we cannot predict the future course of science, which, to paraphrase Wesley Salmon (1991, 329), would seem to be required to assign the likelihood to the Bayesian catchall factor (i.e., $P(e | \text{not-H})$). Nor can we, in science, go along with something because individuals strongly believe it, nor can we wait for swamping out of priors to adjudicate disagreements right now about the evidence in front of us.

Nor need we. As a matter of actual fact, we are rather good at
finding things out with a lot less information—especially where the threats would be the greatest were we unable to do so. If I cannot actually hold one factor constant to see the effects of others, if I cannot literally manipulate or change, I may still be able to find out what it would be like if I could do those things. If I cannot test everything at once, I may be clever enough to test piecemeal. If an event is very rare, I may be able to amplify its effects sufficiently to detect its presence. If I find myself threatened with error, then I need to become a shrewd inquisitor of error. If I cannot face up to these necessary features of experiment by the kind of “white glove” logical analysis of evidence and hypotheses envisioned by E-R approaches, then I am going to have to get down to the nitty-gritty details of the data collection, modeling, and analysis. Statistics, as I see it, is the conglomeration of systematic tools for carrying out these aims—for making virtues out of necessities. What is being systematized by these statistical tools is a reflection of familiar, day-to-day learning from errors.

3. Learning From Errors. How do we learn from error? Let me outline in a very sketchy way the kinds of answers that may be found.3

1. After-trial checking (correcting myself). By “after-trial” I mean after the data or evidence to be used in some inference is at hand. A tentative conclusion may be considered, and we want to check if it is correct. Having made mistakes in reaching a type of inference in the past, we often learn techniques that can be applied the next time to check if we are committing the same error.

In addition to techniques for catching ourselves in error there are techniques for correcting errors. Especially important error-correcting techniques are those designed to go from less accurate to more accurate results, such as taking several measurements and averaging them.

2. Before-trial planning. Knowledge of past mistakes gives rise to efforts to avoid the errors ahead of time, before running an experiment or obtaining data. For example, teachers who suspect that knowing the author of a paper may influence their grading may go out of their way to ensure anonymity before starting to grade. This is an informal analogue to techniques of astute experimental design, such as the use of control groups, double-blinding, and large sample size.

3. An error repertoire. The history of mistakes made in a type of inquiry gives rise to a list of mistakes to either work to avoid (before-trial planning) or check if committed (after-trial checking), for example, a list of the familiar mistakes when inferring a cause of a correla-

3. A far more complete discussion of these and other aspects of the error statistical approach may be found in Mayo 1996.
tion: Is the correlation spurious? Is it due to an extraneous factor? Am I confusing cause and effect? More homely examples are familiar from past efforts at fixing a car or a computer, or at cooking.

4. The effects of mistakes. Through the study of mistakes we learn about the kind and extent of the effect attributable to different errors. This information is then utilized in subsequent inquiries or criticisms. The key is to be able to discriminate effects. Perhaps putting in too much water causes the rice to be softer, but not saltier.

Knowledge of the effects of mistakes is often exploited to “subtract out” their influences after the trial. If the effects of different factors can be sufficiently distinguished or subtracted out later, then the inferences are not threatened by a failure to control for them. Thus knowing the effects of mistakes is often the key to justifying inferences.

5. Simulating errors. An important way to glean information about the effects of mistakes is by utilizing techniques (real or artificial) to display what it would be like if a given error were committed or a given factor is operative. Such simulations can be used both to rule out and pinpoint factors responsible.

Observing an antibiotic capsule in a glass of water over several days revealed, by the condition of the coating, how an ulceration likely occurred when its coating stuck in my throat. In the same vein, we find scientists appealing to familiar chance mechanisms (e.g., coin tossing) to simulate what would be expected if a result were due to experimental artifacts. Statistical models are valuable because they perform this simulation function formally, by way of (probabilistic) distributions.

6. Amplifying and listening to error patterns. One way of learning from error is through techniques for magnifying their effects. I can detect a tiny systematic error in my odometer by driving far enough to a place of known distance. Likewise, a pattern may be gleaned from “noisy” data by introducing a known standard and studying the deviations from that standard. By studying the pattern of discrepancy and by magnifying the effects of distortions, the nature of residuals, and so forth, such deviations can be made to speak volumes.

7. Robustness. From all of this information, we also learn when violating certain recommendations or background assumptions does not pose any problem, does not vitiate specific inferences. Such outcomes or inferences are said to be robust against such mistakes. An important strategy for checking robustness is to deliberately vary the assumptions and see if the result or argument still holds. This strategy often allows for the argument that the inference is sound, despite violations, that inaccuracies in underlying factors cannot be responsible for a result. For were they responsible, we would not have been able to consistently obtain the same results despite variations.
8. Severe error. The above seven points form the basis of learning to detect errors. We can put together so potent an arsenal for unearthing a given error that when we fail to find it we have excellent grounds for concluding that the error is absent.

The same kind of reasoning is at the heart of experimental testing. I call it arguing from error. After learning enough about certain types of mistakes, we may construct a testing procedure with an overwhelmingly good chance of revealing the presence of a specific error, if it exists—but not otherwise. Such a testing procedure may be called a severe (or reliable) test, or a severe error probe. If a hypothesized error is not detected by a test that has an overwhelmingly high chance of detecting it, if instead the test yields a result that accords well with no error, then there are grounds for the claim that the error is absent. We can infer something positive, that the particular error is absent (or is no greater than a certain amount). The informal pattern of such an argument from error is guided by the following thesis:

It is learned that an error is absent when (and only to the extent that) a procedure of inquiry (which may include several tests taken together) that has a very high probability of detecting an error if (and only if) it exists, nevertheless detects no error.

Its failing to detect the error means it produces a result (or set of results) that accords with the absence of the error. Alternatively, the argument from error can be described in terms of a test of a hypothesis \(H \), that a given error is absent. The evidence indicates the correctness of \(H \) when \(H \) passes a severe test—one with a very high probability of failing \(H \), if \(H \) is false. An analogous argument is used to infer the presence of an error.

Let me make some remarks on this idea of severity, although I cannot elaborate here in the detail that is merited. First, severity always refers to a particular inference reached or hypothesis passed—a test may be severe for one hypothesis and not another. Second, the statement of “high probability” need not be obtained by reference to a statistical calculation: some of the strongest arguments from error are based on entirely qualitative assessments of severity. This links to the third point, that the formal statement of severity, while a useful summary, is a pale reflection of the actual, real life flesh and blood argument from error. The substantive argument really refers to how ex-

4. In terms of a hypothesis \(H \), the argument from error may be construed as follows: Evidence in accordance with hypothesis \(H \) indicates the correctness of \(H \) when (and only to the extent that) the evidence results from a procedure that with high probability would have produced a result more discordant from \(H \), were \(H \) incorrect.
traordinary the set of circumstances would have to be in order for an error to continually remain hidden from several well-understood detection techniques.

In order to construct severe probes of error, experimental design directs inquiries to be broken down into piecemeal questions. The situation is broken down so that each hypothesis is a local assertion about a particular error in a given experimental framework. It is important to see that the claim that “H is false” in assessing severity is not the Bayesian catchall hypothesis. Within an experimental testing model, the falsity of a primary hypothesis H takes on a very specific meaning. How to construe it depends on the particular error being ruled out in affirming H (e.g., hypothesis H asserts a given error is absent, H is false asserts that it is present). If H states a parameter is greater than some value c, H is false states it is less than c; if H states that factor x is responsible for at least p% of an effect, its denial states it is responsible for less than p%; if H states an effect is caused by factor f—say an artifact of the instrument—H is false may say an artifact could not be responsible; if H states the effect is systematic, of the sort brought about more often than by chance, then H is false states it is due to chance.

This approach lets me test one piece at a time, and there is no subliminal assignment of prior probabilities to the hypotheses that are not being tested by a given test. If I test, seeking to explain your sore throat, whether it is due to strep or not, I am not assigning zero probability to all the other hypotheses that could explain your sore throat. I am just running a test that discriminates strep from no-strep. It is true that to keep alternatives out of a Bayesian appraisal they are effectively assigned a zero probability. That is because the Bayesian appraisal considers a single probability pie, as it were. Appraising any single hypothesis is necessarily a function of all the alternatives in the so-called catchall hypotheses. Lacking this information and desiring to begin to learn something, the scientist, making a virtue of necessity, calls for tools that do not require this information.

4. Do Error Statistical Tests License Unsound Inferences? Howson criticizes a capsulized version of my idea of arguing from error. He refers to it as (*): e is a good indication of H to the extent that H has passed a severe test with e. His argument that (*) is unsound rests on describing a situation in which there is a hypothesis H that is indicated according to (*) and yet, intuitively, e does not indicate H. Both the assumed situation and the intuitions, however, are Bayesian ones. He supposes, in particular, that (i) a certain disease has a very small incidence, say p%, in a given population; and (ii) any randomly chosen test subject
from this population has a (prior) probability of having the disease equal to \(p \). Howson’s criticism is that evidence that an error statistician would allegedly take as indicating hypothesis \(H \), the disease is present, yields a very low posterior probability to \(H \)—thanks to its low prior probability: “the error probability conditions for a severe test of that particular hypothesis \(H \) are clearly satisfied; equally clearly, passing the test provides no indication of its correctness” (Howson, this issue, emphasis added).

To begin, it is important to distinguish between questioning the soundness of my rule (*) and questioning the soundness of the formal theory of NP tests, although Howson runs the two together. The error probabilistic calculations of NP tests and confidence intervals are as deductively sound as the Bayesian’s calculations. (*), by contrast, is an ampliative and not a deductive rule, and its scrutiny would have to be in contrast to an analogous ampliative Bayesian rule, if only Howson will give us one. Implicitly, he does. Underlying Howson’s charge that \(H \)’s “passing the test provides no indication of its correctness” is something like the following rule:

Howson’s (implicit) rule: There is a good indication or strong evidence for the correctness of hypothesis \(H \) just to the extent that it has a high posterior probability

which may either be a degree of belief or a relative frequency. We will see that Howson has provided no counterexample to (*)—when it is correctly applied—but rather an illustration of the ways our different rules may conflict.

4.1. The Case With a Frequentist Prior

Before turning to the example, recall that the error statistical account is based upon frequentist methods such as NP tests, and these methods developed precisely for situations in which no frequentist prior is available or even meaningful, as with the majority of scientific hypotheses of interest. Instead, the hypotheses are regarded as unknown constants and only error probabilities given one or another hypothesis are considered. The virtue of these methods is their ability to control and learn from these error probabilities without regard to the frequencies with which the hypotheses are true—frequencies that could only make sense where the hypotheses may be regarded as random variables.\(^5\)

But if \(H \) is a random variable, and a frequentist prior is available,

\(^5\) Although hypotheses regarded as unknown constants are viewed as random variables by Bayesians, Howson is incorrect to maintain that this is also the case for frequentists. It is not (see for example, Neyman 1952, Ch. 1).
the error statistician can use it too. However, Howson erroneously supposes that the probability of randomly selecting a person with the disease from a given population gives a frequentist prior appropriate for the error statistician’s question, in the kind of test he describes. It does not. Where the error tester requires positive evidence of having ruled out the presence of disease before issuing a clean bill of health, Howson’s analysis always concludes that there is no indication that the disease is present!

The disease example. In Howson’s example, the test or null hypothesis H asserts that a disease is present, and alternative not-H asserts the disease is absent. In this highly artificial example there are only two outputs: an abnormal reading or a normal reading. The test fails to reject H just when an abnormal reading e occurs.

The case of breast cancer screening offers an example where one can find statistics strikingly close to Howson’s, and it will help to clarify the intuitions upon which this puzzle rests. The null or test hypothesis is H: breast cancer is present; while “not-H” is that breast cancer is absent. However, “not-H” is a disjunction of hypotheses ranging from the presence of precancerous conditions, to a variety of benign breast diseases, all the way to the absence of breast disease, and in order for us to calculate error probabilities we need to consider specific alternatives under “not-H”. We can accommodate Howson’s example by focusing on the following null and alternative hypotheses, respectively:

H: breast cancer is present; J: breast disease is absent

In a typical quantitatively modeled test, the null hypothesis H asserts some parameter μ is equal to some value μ_0, and the test rejects H just in case some random variable X is observed to be sufficiently large. Something analogous can be done in modeling the screening for breast cancer. We can imagine that each test involves a set of diagnostic procedures (e.g., mammogram, tumor marker, ultrasound) and X records the number of these that find nothing suspicious. To approximate Howson’s example, which supposes that if H is true (breast cancer is present) then an abnormal reading e is assured — i.e., that there is a 0 probability of a Type I error — we can imagine that if even one pro-

6. In such cases, the usual error characteristics of tests can themselves be seen as random variables whose expectations may be assessed. See Neyman 1971, 3.

7. For further discussion of the error involved in this type of example, see Mayo 1997.

8. Howson refers to the two test outputs as “positive” and “negative,” where “positive” is the abnormal result, but this may be confusing because a positive test result is commonly equated with rejecting the null. Here, he wants a “positive” (i.e., abnormal) output to fail to reject H.
procedure shows suspicion, then the overall result is abnormal, and H is not rejected. With today’s tests, we could actually get close to Howson’s probability of a Type I error, but more realistically, let us suppose:

$$P(e \mid H: \text{breast cancer}) = \text{practically 1.}$$

We are to suppose further that if a person is disease-free, then she very rarely gets an abnormal reading e. Let

$$P(e \mid J) = \text{very low, say .01.}$$

Howson’s criticism may be spelled out as follows:

1. An abnormal result e is taken as failing to reject H (i.e., as “accepting H’’); while rejecting J, that no breast disease exists.
2. H passes a severe test and thus H is indicated according to (*).
3. But the disease is so rare in the population (from which the patient was randomly sampled) that the posterior probability of H given e is still very low (and that of J given e is still very high).
4. Therefore, “intuitively”, H is not indicated but rather J is.
5. Therefore (*) is unsound.

There are two serious problems with this argument: First, premise 2 results from misapplying (*), and second, premise 4 assumes the intuitions of Howson’s Bayesian rule. I would deny both premises.

How to Tell the Truth about Failures to Reject H. I grant that there are NP tests that might license the objectionable inference to H, but I deny that they do so severely. As I have already stressed, the error statistician does not use NP tests as automatic accept or reject rules. Rather, one infers those hypotheses that pass severe tests, and to calculate severity correctly requires being clear as to the type and extent of the particular error being probed. Although this is not reducible to a recipe, we can articulate systematic (“metastatistical”) rules in order to avoid classic misinterpretations of both rejections of H and failures to reject H in standard testing situations. Howson overlooks these rules and misapplies (*).

Whenever a test result fails to reject null hypothesis H, a standard problem we must be on the lookout for is that the test did not have a good enough chance to reject H even if H is false. We take a lesson

9. Howson’s example takes the rate of disease to be .001, but we can consider the population of women in their 30s to arrive at this lower incidence rate of .0005. This allows us to use the more realistic probability of $P(\text{abnormal result} \mid \text{no disease}) = .01$ and still get the low posterior probability of H given e (.05) that Howson needs for his argument to go through.
from formal tests of H: Failing to reject the null hypothesis H that $\mu = \mu_0$ does not license the inference that μ is exactly μ_0 because the test may rarely have rejected H even under situations where H is strictly false (i.e., where there are discrepancies from μ_0 in the direction of alternative J). H would only pass with low severity.\(^{10}\)

The rule for scrutinizing failures to reject H follows the pattern of arguing from error. Let me try to apply it to Howson’s example (although without a specific designation of random variable X, this can only be a rough approximation):

- An abnormal result e is a poor indication of the presence of disease more extensive than d if such an abnormal result is probable even with the presence of disease no more extensive than d.
- An abnormal result e is a good indication of the presence of disease as extensive as d if it is very improbable that such an abnormal result would have occurred if a lesser extent of disease were present.

We see that a failure to reject H with e (an abnormal result) does not indicate H so long as there are alternatives to H that would very often produce such a result. For example, the test might often yield a positive result even if only a benign type of breast condition exists. In that case, the severity assessment shows that e is not grounds for denying that the condition is of the benign sort: asserting the presence of a disease more serious than a benign one fails to pass a severe test with e. Thus we deny premise 2 of Howson’s argument, and notice, we have done so without making use of the prior probability of H. Only discriminations based on error statistical calculations were needed.

Unsoundness? No. A Conflict of Aims? Yes. The second part of the rule, however, allows that the test is warranted in denying hypothesis J: the absence of disease. That is because if J were true, the test would almost surely (99% of the time) not have given the abnormal result it did. But cannot Howson’s argument be leveled against our allowing “not-J” i.e., some disease to severely pass? Let us grant that it can. The argument would go like this: Failing to reject H with e is taken as indicating the denial of J according to (*), but the disease is so rare that the posterior probability of J given e is still very high. Therefore, “intuitively,” J is indicated (and denying J is not indicated), and thus (*) gets it wrong. However, this conclusion rests upon Howson’s Bayesian intuition, instantiated in premise 4 above.

I readily grant that the Bayesian and the error statistician have very

\(^{10}\) For further discussion of the “rule of acceptance” of H see Mayo 1985, 1989, 1996.
different intuitions here and they stem from the difference in aims sketched earlier. Let us be clear on how an error statistician understands what is being demanded by the test that Howson has specified. (The question of whether it is an appropriate test for some substantive primary question is a distinct problem from the one being confronted just now.) In specifying such a test, with H as the null, and with the 0 or virtually 0 probability of a Type I error, the error tester is saying that we are primarily concerned to avoid giving a woman a false sense of security. We do not want to reject H: the presence of disease, unless we have done an extremely good job ruling out the ways in which it may be a mistake to hold that J: a disease-free condition exists. We must do a good job ruling out the ways of erroneously inferring J before J is licensed. Finding an abnormal result e clearly does not rule out these mistakes, thus e does not warrant J. In other words, in failing to reject H with this test what we mean is: we do not have grounds (of the extent this test is demanding) to assert the absence of breast disease.

But Howson says that we should be primarily concerned to calculate the posterior probability of J given e—which is .95. The appropriate report, he thinks, is that the evidence is a good indication of the absence of the disease.\(^\text{11}\) In other words, the Bayesian lab will output a clean bill of health even on the basis of an abnormal reading on the grounds that the incidence of the disease is so low (in the group from which the subject was randomly taken) that the posterior probability is still high that the disease is absent. In the Bayesian screening, no women could ever have breast disease indicated by this test. If the result is normal, the Bayesian infers (with probability approaching 1) there is no breast disease; if the result is abnormal, as we just saw, he also infers no breast disease—although the posterior probability has gone down a little. The Bayesian calculations are correct—the problem is that Howson’s lab has not done the job demanded by the error statistical test for breast cancer!

Summary of the Error Statistical Report. Although in practice we are not limited to the artificial “abnormal-normal” dichotomy of Howson’s example, even within this limitation we can see how the use of error probabilistic considerations conveys what the results indicate. The abnormal result, one can see, is virtually certain among women

11. *Newsweek* (Feb. 24, 1997, p. 56) recently reported that only 2.5% of women in their 40s who obtain abnormal mammograms are found to have breast cancer. So $P($breast cancer | abnormal mammogram$) = .025$—quite like Howson’s made-up example. Using Howson’s construal of the evidence, such an abnormal mammogram gives confidence of the absence of breast cancer. So the follow-up that discovered these cancers would not have been warranted.
with breast cancer, while it is quite rare, probability .01, among women with no breast disease. Although the abnormal result, we said, did not do a good enough job at discriminating malignant from benign conditions, it clearly did not give positive assurance of a disease-free state. In practice, when such a vague index of suspicion of breast cancer results, one of the new highly-sensitive imaging techniques may be indicated to distinguish malignant tumors from various benign breast diseases. But the indication for this further scrutiny hinges upon the soundness of the initial indication—that this result speaks against a disease-free condition.

Of course if there is adequate information on the rates of benign breast disease, the error statistician may report it along with the indication given by the error probabilistic assessments (e.g., "It is very likely that the condition, if any, will prove to be benign"). In practice, however, there is considerable uncertainty as to whether any population from which a given woman is randomly selected provides the appropriate reference class for assessing her particular risk. (Have they considered her age, genetic background, occupation, diet, weight, age of menstruation, etc.?) Of course there are some situations with frequentist priors where the posterior probabilities are the numbers sought, but those cases involve asking about a very different type of error, and (*) gives the right indication for that error (see Note 6).

4.2. The Case With Subjective Priors. Now all this was when the Bayesian uses frequentist prior probabilities and likelihoods. The most troubling problem for the Bayesian account is its use of probabilities construed only as the subjective degrees of belief of a given agent. Although in defending their methods from criticism Bayesians are quick to turn to statistical contexts with frequentist priors (as in the example above), it should not be forgotten that, except for these special cases, the Bayesian obtains the numbers that he says we really want (i.e., posterior probabilities in hypotheses) only by countenancing probabilities understood as subjective degrees of belief. Our analysis of the previous example lets us see how a sufficiently high subjective prior for a hypothesis \(J\) countenances high Bayesian confirmation for \(J\), even in the face of evidence that is anomalous for \(J\).

A familiar illustration is found in the subjective Bayesian "solution" to Duhem's problem of where to lay the blame in the face of an anomaly. The situation may parallel the disease example: \(H\) entails \(e\) whereas \(e\) is very improbable given alternative hypothesis \(J\). Prior probabilities again come to \(J\)'s rescue, now in the form of a high enough prior degree of belief in \(J\). The posterior in \(J\) remains high even in the face of anom-
alous result e. This "warrants" the scientist in deflecting the anomaly from J and instead discrediting rival hypotheses.

To the error statistician, finding an anomaly for J hardly counts as having done work to rule out the ways in which it can be an error to suppose J is correct. The agent's degrees of belief in J have nothing to do with it. Indeed, so cavalier a treatment of anomalies can be shown to allow hypothesis J to pass with low and even minimal severity. But Bayesians are not required to satisfy these error probabilistic requirements. Howson sees this as a great virtue, heralding the return of common sense.

Error statisticians . . . have for decades given us something quite different from what we want. . . . Only recently has commonsense returned—commonsense reduced to a calculus . . . now known as the Bayesian theory. (Howson, this issue)

But the Bayesian Way has dominated in philosophy of science for some time. As a result, important aspects of scientific practice are misunderstood or overlooked by philosophers, because these practices reflect error statistical principles that are widespread in science. Howson goes so far as to issue a warning against a turn to error statistics: "The message is clear: rely on error probabilities only at your peril" (this issue). But when we really want to learn what our test results are saying, whether about our bodies or about this world, the peril is in relying on the subjective Bayesian screening.

REFERENCES

S212 DEBORAH G. MAYO

Severe Testing as a Basic Concept in a Neyman–Pearson Philosophy of Induction
Deborah G. Mayo and Aris Spanos

ABSTRACT

Despite the widespread use of key concepts of the Neyman–Pearson (N–P) statistical paradigm—type I and II errors, significance levels, power, confidence levels—they have been the subject of philosophical controversy and debate for over 60 years. Both current and long-standing problems of N–P tests stem from unclarity and confusion, even among N–P adherents, as to how a test’s (pre-data) error probabilities are to be used for (post-data) inductive inference as opposed to inductive behavior. We argue that the relevance of error probabilities is to ensure that only statistical hypotheses that have passed severe or probative tests are inferred from the data. The severity criterion supplies a meta-statistical principle for evaluating proposed statistical inferences, avoiding classic fallacies from tests that are overly sensitive, as well as those not sensitive enough to particular errors and discrepancies.

1 Introduction and overview

1.1 Behavioristic and inferential rationales for Neyman–Pearson (N–P) tests
1.2 Severity rationale: induction as severe testing
1.3 Severity as a meta-statistical concept: three required restrictions on the N–P paradigm

2 Error statistical tests from the severity perspective

2.1 N–P test \(T(\alpha)\): type I, II error probabilities and power
2.2 Specifying test \(T(\alpha)\) using p-values

3 Neyman’s post-data use of power

3.1 Neyman: does failure to reject \(H\) warrant confirming \(H\)?

4 Severe testing as a basic concept for an adequate post-data inference

4.1 The severity interpretation of acceptance (SIA) for test \(T(\alpha)\)
4.2 The fallacy of acceptance (i.e., an insignificant difference): Ms Rosy
4.3 Severity and power

5 Fallacy of rejection: statistical vs. substantive significance

5.1 Taking a rejection of \(H_0\) as evidence for a substantive claim or theory
5.2 A statistically significant difference from \(H_0\) may fail to indicate a substantively important magnitude
5.3 Principle for the severity interpretation of a rejection (SIR)
1 Introduction and overview

Questions about the nature and justification of probabilistic and statistical methods have long been of central interest to philosophers of science. Debates over some of the most widely used statistical tools—significance tests, Neyman–Pearson (N–P) tests and estimation—over the past 60 years, are entwined with a core philosophical question:

‘Where should probability enter in inductive inference in science?’

In tackling this question there are two main distinct philosophical traditions from which to draw (Pearson [1950], p. 394). In one, probability is used to provide a post-data assignment of degree of probability, confirmation, or belief in a hypothesis; while in a second, probability is used to assess the reliability of a test procedure to assess and control the frequency of errors in some (actual or hypothetical) series of applications (error probabilities). We may call the former degree of confirmation approaches, the latter, error probability or error statistical approaches. Since the former has seemed most in sync with philosophical conceptions of inductive inference, while the latter is embodied in statistical significance tests and N–P methods, it is easy to see why conflict has abounded in the philosophical literature. The ‘error probability’ versus ‘degree of confirmation’ debates take such forms as: decision vs. inference, pre-data vs. post-data properties, long-run vs. single case, and have been discussed by numerous philosophers e.g., Earman, Fetzer, Giere, Gillies, Glymour, Hacking, Horwich, Howson, Kyburg, Levi, Peirce, Rosenkrantz, Salmon, Seidenfeld, Spielman, Urbach.¹

As advances in computer power have made available sophisticated statistical methods from a variety of schools (N–P, Fisherian, Bayesian, Bayesian, Birnbaum, Cox, de Finetti, Edwards, Efron, Fisher, Good, Jeffreys, Kempthorne, LeCam, Lehmann, Lindley, Neyman, Pearson, Pratt, Savage. Excellent collections of contributions by philosophers and statisticians are Godambe and Sprott ([1971]), and Harper and Hooker ([1976]).

¹ A partial list among statisticians who contributed to these debates: Armitage, Barnard, Berger, Birnbaum, Cox, de Finetti, Edwards, Efron, Fisher, Good, Jeffreys, Kempthorne, LeCam, Lehmann, Lindley, Neyman, Pearson, Pratt, Savage. Excellent collections of contributions by philosophers and statisticians are Godambe and Sprott ([1971]), and Harper and Hooker ([1976]).
algorithmic), a happy eclecticism may seem to have diminished the need to resolve the philosophical underpinnings of the use and interpretation of statistical methods. However, the significance test controversy is still hotly debated among practitioners, particularly in psychology, epidemiology, ecology, and economics; one almost feels as if each generation fights the ‘statistics wars’ anew, with journalistic reforms, and task forces aimed at stemming the kind of automatic, recipe-like uses of significance tests that have long been deplored.\footnote{The social science literature criticizing significance testing is too vast to encompass; some key sources are: Cohen ([1988]), Harlow et al. ([1997]), Morrison and Henkel ([1970]), MSERA ([1998]), Thompson ([1996]).} Moreover, the newer statistical methods involving model selection algorithms and multiple hypothesis testing do not get away from, but rather pile up applications of, significance test results. Having never resolved satisfactorily questions of the role of error probabilities, practitioners face a shortage of general principles for how—or even whether—to calculate error probabilities in such contexts.

Not that practitioners are waiting for philosophers to sort things out. We read, for instance, in a recent article in \textit{Statistical Science}: ‘professional agreement on statistical philosophy is not on the immediate horizon, but this should not stop us from agreeing on methodology’ (Berger [2003], p. 2). However, the latter question, we think, turns on the former.\footnote{In this article, Berger considers how to reconcile Fisher and Neyman, as well as Jeffreys; see the comments in Mayo ([2003b]).} Seeking an agreement on numbers first, with the assumption that philosophy will follow, leads to ‘reconciliations’ that may not do justice to core principles underlying the disparate philosophies involved. In particular, using error probabilities as posterior probabilities (however ingenious the latest attempts), leads to ‘hybrids’ from mutually inconsistent statistical paradigms (Gigerentzer [1993]). Many Bayesian practitioners, wishing to avoid the infirmities of eliciting and depending on subjective prior probabilities, turn to developing prior ‘weights’ as reference points from which to calculate ‘objective’ posteriors. However, the various proposed ‘reference’ priors are themselves open to persistent problems and paradoxes (Kass and Wasserman [1996]). David Cox recently argued that their main conceptual justification is that, in a given class of cases, they lead, at least approximately, to procedures with acceptable frequentist properties (Cox [2006]), thereby raising anew the question of the nature and role of frequentist error probabilities. While not wishing to refight old battles, we propose to reopen the debate from a contemporary perspective—one that will allow developing an interpretation of tests (and associated methods) that avoids cookbooks, is inferential, and yet keeps to the philosophy of frequentist error probability statistics. Ironically, we will extract some needed threads from little discussed papers by Neyman—one
of the key, early, controversial figures (Neyman [1955], [1956], [1957a],
[1957b]).

1.1 Behavioristic and inferential rationales for
Neyman–Pearson (N–P) tests

In ‘Inductive Behavior as a Basic Concept of Philosophy of Science,’
Jerzy Neyman ([1957a]) suggests that ‘in relation to science, the philosophy
of science plays the same role as anatomy and neurology play in relation
to the process of walking’ (pp. 7–8): to understand and improve on the
proper functioning of the processes in question. In a proper ‘anatomization’
of the process of statistical induction, Neyman charges, ‘the term “inductive
reasoning” is a misnomer, . . . and that a better term would be something like
inductive behavior’ (p. 8)—the process of adjusting our actions to observations.

A Neyman and Pearson (N–P) test, as Neyman interprets it, is a rule of
inductive behavior:

To decide whether a hypothesis, H, of a given type be rejected or not,
calculate a specified character, $t(x_0)$ of the observed facts [the test statistic];
if $t(x) > t(x_0)$ Reject H; if $t(x) \leq t(x_0)$ Accept H (Neyman and Pearson
[1933], p. 291).

‘Accept/Reject’ are identified with deciding to take specific actions, for
example, rejecting H might be associated with publishing a result, or announc-
ing a new effect. The set of outcomes that lead to ‘Reject H’ make up the
test’s rejection (or critical) region; it is specified so that:

it may often be proved that if we behave according to such a rule . . . we
shall reject H when it is true not more, say, than once in a hundred times,
and in addition we may have evidence that we shall reject H sufficiently
often when it is false. (Neyman and Pearson [1933], p. 291)

Why should one accept/reject statistical hypotheses in accordance with a test
rule with good error probabilities? The inductive behaviorist has a ready answer:

Behavioristic rationale: We are justified in ‘accepting/rejecting’ hypotheses
in accordance with tests having low error probabilities because we will
rarely err in repeated applications.

By and large, however, error statistical practitioners seem to regard the error
probabilistic behavior of tests in (actual or hypothetical) repetitions as simply a
useful way to describe the properties of tests: and these properties enable tests
to suitably function for inductive inference in science. Indeed, wishing to
disentangle themselves from the decision-behavior construal, most users of
N–P tests favor such generic labels as hypothesis tests, statistical significance
tests, or error probability methods—we will use error statistics for short. Their
thinking, if only implicit, is that error probabilities admit of an inferential rationale:

Inferential Rationale (general): Error probabilities provide a way to determine the evidence a set of data x_0 supplies for making warranted inferences about the process giving rise to data x_0.

The as yet unanswered question is how do error statistical tests satisfy the inferential rationale? How, in short, should we bridge the gap from error properties of procedures to specific inferences based on them:

Error probabilities \rightarrow inference

An adequate answer requires the philosophical ‘anatomist’ to go beyond the traditional N–P paradigm which leaves this issue unattended, where we understand by the ‘N–P paradigm’ the uninterpreted statistical tools based on error probabilities. Whether this ‘going beyond’ is to be viewed as a reinterpretation, extension, or theoretical foundation of N–P theory, in order for it to succeed, it must address three main problems that have long been taken as obstacles for using N–P tests for inductive inference as opposed to inductive behavior; namely, that N–P tests are too:

(i) **Coarse:** N–P tests tell us whether to reject or accept hypotheses according to whether $t(x)$ falls in the test’s rejection region or not, but evaluating evidence and inference post-data seem to require more data-specific interpretations.

(ii) **Open to Fallacies:** N–P tests give rise to fallacies of rejection (statistical significance vs. substantive significance) and of acceptance (no evidence against is not evidence for).

(iii) **Focused on Pre-Data, Behavioristic Goals (in specifying and justifying tests):** The good long-run performance characteristics of N–P tests (low type I and type II error probabilities) may conflict with criteria that seem appropriate for inference once the data are available, i.e., post-data.

By assuming the former, degree-of-confirmation philosophy, it is often supposed that in order for N–P methods to avoid problems (i)–(iii), pre-data error probabilities must be made to supply hypotheses with some post-data degrees of confirmation or support:

Degree of confirmation rationale: Error probabilities may be used post-data to assign degrees of confirmation or support to hypotheses.

But error probabilities do not, nor were they intended to, supply such degrees of probability or confirmation; interpreting them as if they did yields inconsistent ‘hybrids’. Post-data (posterior) degrees of probability require prior probability assignments to (an exhaustive set of) hypotheses, and N–P tests were developed to avoid reliance on such prior probabilities, however they
are interpreted (e.g., logical, subjective). One may simply posit the inferential rationale, by fiat, but this is to skirt and not answer the philosophical question (Hacking [1965]; Birnbaum [1969]). Birnbaum ([1977]) attempted an ‘evidential’ interpretation of N–P tests by means of his ‘Confidence Concept,’ but this remains a pre-data error probability notion. An attempt by Kiefer ([1977]) to deal with the coarseness problem via his notion of ‘conditional’ error probabilities also differs from the approach we will take.

1.2 Severity rationale: induction as severe testing

We propose to argue that N–P tests can (and often do) supply tools for inductive inference by providing methods for evaluating the severity or probativeness of tests. An inductive inference, in this conception, takes the form of inferring hypotheses or claims that survive severe tests. In the ‘severe testing’ philosophy of induction, the quantitative assessment offered by error probabilities tells us not ‘how probable’, but rather, ‘how well probed’ hypotheses are. This suggests how to articulate the general inferential rationale we seek:

Severity rationale: Error probabilities may be used to make inferences about the process giving rise to data, by enabling the assessment of how well probed or how severely tested claims are, with data x_0.

Although the degree of severity with which a hypothesis H has passed a test is used to determine if it is warranted to infer H, the degree of severity is not assigned to H itself: it is an attribute of the test procedure as a whole (including the inference under consideration). The intuition behind requiring **severity** is that:

Data x_0 in test T provide good evidence for inferring H (just) to the extent that H passes severely with x_0, i.e., to the extent that H would (very probably) not have survived the test so well were H false.

Karl Popper is well known to have insisted on severe tests: ‘Observations or experiments can be accepted as supporting a theory (or a hypothesis, or a scientific assertion) [H] only if these observations or experiments are severe tests of the theory’ (Popper [1994], p. 89)—that is, H survived ‘serious criticism’. However, Popper, and the modern day ‘critical rationalists’ deny they are commending a reliable process—or at least, ‘they must deny this if they [are] to avoid the widespread accusation that they smuggle into their theory either inductive reasoning or some metaphysical inductive principle.’ (Musgrave [1999], pp. 246–7). All we know, says Popper, is that the surviving hypotheses ‘may be true’; but high corroboration is at most a report of H’s past performance—we are not warranted in relying on it. By contrast, N–P tests will be regarded as good only insofar as they can be shown to have appropriately low error probabilities, which itself involves inductive justification. (For further discussion of critical rationalism see Mayo [2006], pp. 63–96).
1.3 Severity as a meta-statistical concept: three required restrictions on the N–P paradigm

N–P tests do not directly supply severity assessments. Having specified a null hypothesis H_0, and an alternative hypothesis H_1 (the complement of H_0) a N–P test, mathematically speaking, is simply a rule that maps each possible outcome $x = (x_1, \ldots, x_n)$ into H_0 or H_1, so as to control at small values the probability of erroneous rejections (type I error) and erroneous acceptances (type II error). The severity principle is a meta-statistical principle to direct the uses of tests for the severity goal. Although N–P tests map data into two outputs, accept and reject, both may be regarded as passing a given statistical claim H with which data x agrees; we have then to ascertain if such agreement would occur (and how frequently) under specific denials of H. That is,

A statistical hypothesis H passes a {severe test} T with data x_0 if,
(S-1) x_0 agrees with H, and
(S-2) with very high probability, test T would have produced a result that accords less well with H than x_0 does, if H were false.\(^4\)

Our specific focus will be on cases where ‘H is false’ refers to discrepancies from parameters in a statistical model, but we will also suggest how the idea may be generalized to inferring the presence of ‘an error’ or flaw, very generally conceived. A main task for statistical testing is to learn, not just whether H is false, but approximately, how far from true H is, with respect to parameters in question.

The severity function has three arguments: a test, an outcome or result, and an inference or a claim. ‘The severity with which inference H passes test T with outcome x’ may be abbreviated by:

$$\text{SEV}(\text{Test } T, \text{ outcome } x, \text{ claim } H).$$

Granted, other terms could serve as well to bring out the essential features of our conception; the main thing is to have a notion that exemplifies the ‘probative’ concept, that is not already attached to other views, and to which the formal apparatus of N–P testing lends itself. The severity goal not only requires that:

(a) ‘Accept/Reject’ be interpreted inferentially, as evidence of the presence or absence of departures, (appropriate to the testing context or question),

\(^4\) Condition (S-2) can equivalently be written: with very low probability, test T would have produced a result that accords with H as well as (or better than) x_0 does, if H were false (and a given discrepancy were present).
it requires as well that:

(b) the test statistic \(t(X) \) defines an appropriate measure of accordance or distance (as required by severity condition S-I).\(^5\)

To emphasize (b), we will use \(d(X) \) for the test statistic; see Pearson ([1947], p. 143). Thirdly,

(c) the severity evaluation must be sensitive to the particular outcome \(x_0 \); it must be a post-data assessment.

Moreover, the guide for evaluating, and possibly adjusting, error probabilities (e.g., in multiple hypothesis testing, in data mining) is whether the probativeness is altered with respect to the particular error of interest; see Mayo and Cox ([2006]).

An informal example may serve to capture the distinction between the behavioristic and severity rationales that we will be developing: Suppose a student has scored very high on a challenging test—that is, she earns a score that accords well with a student who has mastered the material. Suppose further that it would be extraordinary for a student who had not mastered most of the material to have scored as high, or higher than, she did. What warrants inferring that this score is good evidence that she has mastered most of the material? The behavioristic rationale would be that to always infer a student’s mastery of the material just when they scored this high, or higher, would rarely be wrong in the long run. The severity rationale, by contrast, would be that this inference is warranted because of what the high score indicates about this student—mastery of the material.

From the severe-testing perspective, error probabilities have a crucial role to play in obtaining good test procedures (pre-data), and once the data \(x_0 \) are in (post-data), they enable us to evaluate the probativeness or severity with which given hypotheses pass tests with \(x_0 \). The severity criterion, we will argue, gives guidance as to what we should look for in scrutinizing N–P tests and inferences based on them; in so doing, the cluster of challenges underlying (i)–(iii) may be answered. Having the necessary impact on the controversy as it is played out in practice, however, demands not merely laying out a general principle of inference, but showing how it may be implemented. That is the goal of our discussion. We limit ourselves here to familiar classes of hypotheses tests, though our points may be extended to many classes of tests. See for example Spanos ([2006]).

\(^5\) In an appropriate distance measure between \(H \) and \(x \), the larger \(d(x) \) is the more indicative of discrepancy from \(H \).
2 Error statistical tests from the severity perspective

Although the severity perspective directs the above restrictions/reinterpretations, we retain several distinguishing features offered by the N–P (error-statistical) paradigm. To begin with, in error-statistical testing, one is asking a question about the data generating mechanism, framed in terms of a statistical hypothesis H. H cannot merely be an event; rather, H must assign a probability to each possible outcome x, i.e., it gives the ‘probability of x under H’, abbreviated as $P(x; H)$. This notation helps also to avoid confusion with conditional probabilities in Bayes’s theorem, $P(x|H)$, where H is treated as a random variable with its own prior probabilities.6

The hypothesis testing question is put in terms of a null (or test) hypothesis H_0, and alternative H_1, the union of which exhausts the parameter space of the a statistical model which can be represented as a pair (\mathcal{X}, Θ); where \mathcal{X} denotes the set of all possible values of the sample $X = (X_1, \ldots, X_n)$—a set of random variables—one such value being the data $x_0 = (x_1, \ldots, x_n)$, and Θ denotes the set of all possible values of the unknown parameter(s) θ. In hypothesis testing Θ is used as a shorthand for the family of densities indexed by θ, i.e. $\Theta := \{f(x; \theta), \theta \in \Theta\}$, and the generic form of null and alternative hypotheses is:

$$H_0: \theta \in \Theta_0 \text{ vs. } H_1 : \theta \in \Theta_1,$$

where (Θ_0, Θ_1) constitutes a partition of Θ.7

There is a test statistic $d(X)$ reflecting the distance from H_0 in the direction of H_1, such that the distribution of $d(X)$, its sampling distribution, evaluated under H_0, involves no unknown parameters. Because error probabilities concern the distribution of $d(X)$, evaluated under both the null and alternative hypotheses, interpreting a given result involves considering not just the observed value, $d(x_0)$, but other possible values in \mathcal{X} that could have occurred.8

For simplicity, we limit our focus to examples with a single unknown parameter μ, but our results apply to any hypothesis testing situation that can be viewed as a special case of the above generic form; see Spanos ([1999], ch. 14).

2.1 N–P Test $T(\alpha)$: type I, II error probabilities and power

Example. Consider a sample $X = (X_1, \ldots, X_n)$ of size n, where each X_i is assumed to be Normal ($N(\mu, \sigma^2)$), Independent and Identically Distributed

6 Freedman ([1995]) employs $P(\cdot | H)$ to avoid the same confusion, but ‘;’ is more familiar.

7 Note that this precludes the artificial point against point hypothesis test that is so often the basis of criticisms (Hacking, [1965]; Royall, [1997]).

8 By contrast, posterior probabilities are evaluated conditional on the particular observed value of X, say x_0. Other values that could have resulted but did not are irrelevant once x_0 is in hand.
(NIID), with the standard deviation σ known, say $\sigma = 2$:

$$M: X_i \sim \text{NIID}(\mu, \sigma^2), \quad \text{where } -\infty < \mu < \infty, \ i = 1, 2, \ldots, n.$$

To keep the focus on the main logic, we assume that the null and alternative hypotheses of interest will concern the mean μ:

$$H_0: \mu \leq \mu_0 \text{ vs. } H_1: \mu > \mu_0.$$

The relevant test statistic is:

$$d(X) = \frac{\bar{X} - \mu_0}{s_x},$$

where \bar{X} is the sample mean with standard deviation $s_x = (s/\sqrt{n})$. Under the null, $d(X)$ is distributed as standard Normal, denoted by $d(X) \sim N(0, 1)$.

The test is specified so that the probability of a Type I error, α, is fixed at some small number, such as 0.05 or 0.01, the significance level of the test:

$$\text{Type I error probability } = P(d(X) > c_\alpha; H_0) \leq \alpha,$$

where $C_1(\alpha) = \{x: d(x) > c_\alpha\}$ denotes the rejection region.\(^9\) Let $T(\alpha)$ denote the test defined by $d(X)$ and $C_1(\alpha)$. Having fixed the type I error, as the ‘more important’ of the two, N–P test principles then seek out the test that at the same time has a small probability of committing a type II error β. Since the alternative hypothesis H_1, as is typical, contains more than a single value of the parameter, it is composite, we abbreviate by $\beta(\mu_1)$ the type II error probability corresponding to $\mu = \mu_1$, for μ_1 values greater than μ_0, i.e., in the alternative region:

$$\text{Type II error probability (at } \mu_1) = P(d(X) \leq c_\alpha; \mu_1) = \beta(\mu_1), \text{ for any } \mu_1 > \mu_0.$$

The ‘optimality’ of a N–P test of significance level α, is specified primarily in terms of minimizing $\beta(\mu_1)$ for all $\mu_1 > \mu_0$, or equivalently, maximizing the power (see Lehmann [1986]):

$$\text{POW}(T(\alpha); \mu_1) = P(d(X) > c_\alpha; \mu_1), \text{ for } \mu_1 > \mu_0.$$

The above components define a N–P test $T(\alpha)$ with significance level α which rejects H_0 with data x_0 if and only if $d(x_0)$ is greater than c_α.

Test $T(\alpha)$: if $d(x_0) > c_\alpha$, Reject H_0; if $d(x_0) \leq c_\alpha$, Accept H_0.

Numerical Example. Let $\mu_0 = 12, \alpha = .025, n = 100, \sigma = 2 (\sigma_x = 0.2).$ The test rule associated with test $T(\alpha)$ is: Reject H_0 if $d(x_0) > 1.96$, i.e., whenever $x > 12.4$.

\(^9\) A sufficient condition for an appropriate rejection region is that for any two significance levels α_1 and α_2 such that $0 \leq \alpha_1 < \alpha_2 \leq 1$, $C_1(\alpha_1)$ is a subset of $C_1(\alpha_2)$. This goes hand in hand with specifying a test statistic that provides an appropriate ‘distance measure’ as severity requires; see note 5.
Note that while test $T(\alpha)$ describes a familiar ‘one-sided’ test, our discussion easily extends to the case where one is interested in ‘two-sided’ departures: One simply combines two tests, ‘one to examine the possibility that $\mu_1 > \mu_0$, the other for $\mu_1 < \mu_0$’ (Cox and Hinkley [1974], p. 106, replaced θ with μ). In this case, the α level two-sided test combines both one-sided tests, each with significance level 0.5α.

2.2 Specifying Test $T(\alpha)$ using p-values

An alternative, but equivalent, way to specify the N–P test is in terms of the observed significance level or the p-value (Fisher [1935]), defined as ‘the probability of a difference larger than $d(x_0)$, under the assumption that H_0 is true,’ i.e.

$$p(x_0) = P(d(X) > d(x_0); H_0):$$

Test $T(\alpha)$: if $p(x_0) \leq \alpha$, reject H_0; if $p(x_0) > \alpha$, accept H_0.

Fisherian significance tests differ from N–P tests primarily in so far as the alternative hypothesis H_1, in the N–P sense, is absent. As a result, the error probabilities are confined to those evaluated under the null, and thus, in contrast to the N–P paradigm, there is no notion of ‘optimality’ (based on power), associated with the choice of a test.

Fisher ([1935], [1956]), eschewed the N–P behavioristic model (which he regarded as a distortion of his significance tests on which it was built), preferring to report the observed p-value: if small (e.g., 0.05 or 0.01) the null hypothesis would be rejected at that level. Some prefer to simply report the p-value as a degree of inconsistency between x_0 and H_0 (the ‘pure significance test’): the smaller the p-value, the more inconsistent (Cox [1958]). Even N–P practitioners often prefer to report the observed p-value rather than merely whether the predesignated cut-off for rejection, c_α, has been reached, because it ‘enables others to reach a verdict based on the significance level of their choice’ (Lehmann, [1986], p. 70). Problems arise when p-values are interpreted illegitimately as degrees of probability of H_0 (an inconsistent hybrid). For example, a difference that is significant at level .01 does not mean we assign the null hypothesis a probability .01. Nevertheless, p-value reports have many inadequacies. To report p-values alone is widely disparaged as failing to assess the discrepancy or ‘effect size’ indicated (see Rosenthal [1994]; Thompson [1996]); nowadays it is often required (e.g., in psychology journals) that effect-size measures accompany p-values.

The severity conception retains aspects of, and also differs from, both Fisherian and Neyman–Pearsonian accounts, as traditionally understood. We wish to retain the post-data aspect of p-values—indeed extend it to other post-data error probabilities—but without forfeiting the advantages
offered by explicitly considering alternatives from the null hypothesis. A severity analysis allows both the data dependency of (post-data) error probabilities as well as an inferential report of the ‘discrepancy’ from the null that is warranted by data \(x_0 \). It is a ‘hybrid’ of sorts, but it grows from a consistent inferential philosophy.\(^{10}\)

3 Neyman’s post-data use of power

Given the pre-data emphasis of the better known formulations of N–P theory, it is of interest to discover that, in discussing ‘practice’, Neyman, at times, calls attention to ‘the use of the concept of the power of a test in three important phases of scientific research: (i) choice of a statistical test, (ii) design of an experiment, and (iii) interpretation of results’ (Neyman [1957b], p. 10). Phases (i) and (ii) are pre-data. In particular, by designing \(T(\alpha) \) so that \(\text{POW}(T(\alpha); \mu_1) = \text{high} \), a tester ensures, ahead of time, that there is a high probability that the test would detect a discrepancy \(\gamma \) if it existed, for \(\mu_1 = \mu_0 + \gamma \). That a test ‘detects a discrepancy’ means it rejects \(H_0 \) or reports a statistically significant (\(\alpha \)-level) departure from \(H_0 \)—perhaps a better term is that it ‘signals’ a discrepancy (we do not know it would do so correctly).

Phase (iii), however, is post-data. In phase (iii), ‘the numerical values of probabilities of errors of the second kind are most useful for deciding whether or not the failure of a test to reject a given hypothesis could be interpreted as any sort of ‘confirmation’ of this hypothesis’ (Neyman [1956], p. 290). To glean how Neyman intends power to be used in phase (iii), it is interesting to turn to remarks he directs at Carnap, and at Fisher, respectively.\(^{11}\)

3.1 Neyman: does failure to reject \(H \) warrant confirming \(H \)?

Addressing Carnap, ‘In some sections of scientific literature the prevailing attitude is to consider that once a test, deemed to be reliable, fails to reject the hypothesis tested, then this means that the hypothesis is ‘confirmed’ (Neyman [1955]). Calling this ‘a little rash’ and ‘dangerous’, he claims ‘a more cautious attitude would be to form one’s intuitive opinion only after studying the power function of the test applied’ (p. 41).

\(^{10}\) It is a mistake to regard the introduction of the alternative hypothesis, and with it, the notion of power, as entailing the behavioristic model of tests. While, in responding to Fisher ([1955]) distanced himself from the behavioristic construal, he described the introduction of alternative hypotheses as a ‘Pearson heresy’, whose aim was to put the choice of test under sounder footing. See Mayo ([1992], [1996]).

\(^{11}\) To our knowledge, Neyman discusses post-data power in just the three articles cited here. Other non-behavioral signs may be found also in Neyman ([1976]) wherein he equates ‘deciding’ with ‘concluding’ and declares that his ‘preferred substitute for ‘do not reject \(H \) is ‘no evidence against \(H \) is found’, both of which, being ‘cumbersome’ are abbreviated with ‘accept \(H \). This last point is not unusual for Neyman.
[If] the chance of detecting the presence [of discrepancy from the null], . . . is extremely slim, even if [the discrepancy is present]. . . , the failure of the test to reject H_0 cannot be reasonably considered as anything like a confirmation of H_0. The situation would have been radically different if the power function [corresponding to a discrepancy of interest] were, for example, greater than 0.95.12 (ibid., p. 41)

Although in theory, once the N–P test is set up, the test is on ‘automatic pilot’—H_0 is accepted or rejected according to whether $d(x_0) > c_a$—in practice, even behaviorist Neyman betrays a more nuanced post-data appraisal.

In an ironic retort, Neyman ([1957a]) criticizes Fisher’s move from a large p-value to confirming the null hypothesis as ‘much too automatic [because] . . . large values of p may be obtained when the hypothesis tested is false to an important degree. Thus, . . . it is advisable to investigate . . . what is the probability (of error of the second kind) of obtaining a large value of p in cases when the [null is false to a specified degree]’ (p. 13, replaced P with p)—that is, the power of the test. Note: a large value of p leads to ‘accept H_0', or to reporting a non-statistically significant difference. Furthermore, Neyman regards the post-data reasoning based on power as precisely analogous to the construal of rejection:

[If] the probability of detecting an appreciable error in the hypothesis tested was large, say .95 or greater, then and only then is the decision in favour of the hypothesis tested justifiable in the same sense as the decision against this hypothesis is justifiable when an appropriate test rejects it at a chosen level of significance (Neyman [1957b], pp. 16–7).

Since he is alluding to Fisher, he combines notions from Fisherian and N–P tests in a general principle underlying the post-data use of power for interpreting ‘Accept H_0', i.e., a non-significant difference $d(x_0)$:

(3.1) If data $d(x_0)$ are not statistically significantly different from H_0—i.e., p is not small—and the power to detect discrepancy γ is high (low), then $d(x_0)$ is (not) good evidence that the actual discrepancy is less than γ.

Admittedly, no such testing principle is to be found in the standard theoretical expositions of N–P testing theory.13 The emphasis on the

12 There are obvious similarities to the Popperian demand that hypotheses be highly corroborated. Neyman’s recommendation would seem to offer a way to obtain a positive upshot from the falsificationist goals that Gillies ([1973]) looks to significance tests to provide. Mere failures to reject H_0 should not count as Popperian corroboration for H_0, but an assertion such as our ‘the departure from H_0 is no greater than γ’.

13 Early proponents of essentially the principle in (3.1) may be found in Bailey ([1971]), Cohen ([1988]), Gibbons and Pratt ([1975]), Mayo ([1983]). More recently, it arises in those wishing to reform significance tests (e.g., in psychology—see references in note 2) by supplementing them with ‘effect size’ measures, unaware that the seeds are already in Neyman ([1955], [1957a], [1957b]).
predesignation of tests may even seem to discourage such a post-data use of error probabilities.

Note how the stipulations in (3.1) adhere to severity requirements (S-1) and (S-2). The inference being considered for scrutiny is:

\[H: \text{the discrepancy (from } \mu_0 \text{) is less than } \gamma \]

which, notice, differs from \(H_0 \), unless \(\gamma = 0 \). The statistically insignificant result ‘agrees with’ \(H \), so we have (S-1), and from the high power, we satisfy (S-2): that is, with very high probability, test \(T \) would have produced a result that accords less well with \(H \) than \(x_0 \) does, were \(H \) false (were the discrepancy from \(\mu_0 \) to exceed \(\gamma \)). Note that to ‘accord less well with \(H \)’ means, in this context, obtain a smaller p-value than observed. Nevertheless, severity calls for replacing the coarse assessment based on power with a data-dependent analysis.

4 Severe testing as a basic concept for an adequate post-data inference

The post-data use of power in (3.1) retains an unacceptable coarseness: Power is always calculated relative to the cut-off point \(c_a \) for rejecting \(H_0 \). Consider test \(T(\alpha) \) with particular numerical values: \(\alpha = 0.025 \), \(n = 100 \), \(\sigma = 2 \) (\(\sigma_x = 0.2 \)).

\[H_0: \mu \leq 12 \text{ vs. } H_1: \mu > 12. \]

Reject \(H_0 \) iff \(d(x_0) > 1.96 \), i.e., iff \(\bar{x} \geq 12.4 \).

(Equivalently, Reject \(H_0 \) iff the p-value is less than 0.025.) Suppose, for illustration, \(\gamma^* = 0.2 \) is deemed substantively important (\(\mu := \mu_0 + \gamma^* = 12.2 \)). To determine if ‘it is a little rash’ to take a non-significant result, say \(d(x_0) = -1.0 \), as reasonable evidence that \(\gamma < \gamma^* \) (i.e., an important discrepancy is absent), we are to calculate \(\text{POW}(T(\alpha), \gamma^*) \), which is only 0.169! But why treat all values of \(d(x_0) \) in the acceptance region the same?

What if we get ‘lucky’ and our outcome is very much smaller than the cut-off 1.96? Intuition suggests that \(d(x_0) = -1.0 \) provides better evidence for \(\gamma < \gamma^* \) than \(d(x_0) = 1.95 \) does. The evaluation of \(\text{POW}(T(\alpha), 2) \), however, will be identical for both sample realizations. In fact, were \(\mu \) as large as 12.2, there is a high probability of observing a larger difference than \(-1 \). In particular, \(P(d(X) > -1.0; 12.2) = 0.977 \). This suggests that, post-data, the relevant threshold is no longer the pre-designated \(c_a \), but \(d(x_0) \). That is, rather than calculating:

\[\text{Power at } \mu = 12.2: P(d(X) > c_a; \mu = 12.2), \]
one should calculate what may be called,

Attained (or actual) Power : $P(d(X) > d(x_0); \mu = 12.2)$.

The *attained power* against alternative $\mu = 12.2$ gives the *severity* with which $\mu < 12.2$ passes test $T(\alpha)$ when H_0 is accepted.\(^{14}\) Several numerical illustrations will be shown.

4.1 The severity interpretation of acceptance (SIA) for test $T(\alpha)$

Applying our general abbreviation we write ‘the severity with which the claim $\mu \leq \mu_1$ passes test $T(\alpha)$, with data x_0’:

$$SEV(T(\alpha), d(x_0), \mu \leq \mu_1),$$

where $\mu_1 = (\mu_0 + \gamma)$, for some $\gamma \geq 0$. For notational simplicity, we suppress the arguments ($T(\alpha), d(x_0)$) where there is no confusion, and use the abbreviation: $SEV(\mu \leq \mu_1)$—but it must be kept in mind that we are talking here of test $T(\alpha)$. We obtain a principle analogous to 3.1:

SIA: (a): If there is a very high probability that $d(x_0)$ would have been larger than it is, were $\mu > \mu_1$, then $\mu \leq \mu_1$ passes the test with high severity, i.e. $SEV(\mu \leq \mu_1)$ is high.

(b): If there is a very low probability that $d(x_0)$ would have been larger than it is, even if $\mu > \mu_1$, then $\mu \leq \mu_1$ passes with low severity, i.e. $SEV(\mu \leq \mu_1)$ is low.

We are deliberately keeping things at a relatively informal level, to aid in clarity. The explicit formula for evaluating $SEV(\mu \leq \mu_1)$ in the case of a statistically insignificant result (‘Accept H_0’), in the context of test $T(\alpha)$ is:

$$SEV(\mu \leq \mu_1) = P(d(X) > d(x_0); \mu \leq \mu_1 \text{false}) = P(d(X) > d(x_0); \mu > \mu_1).$$

As in the case of power, severity is evaluated at a point $\mu_1 = (\mu_0 + \gamma)$, for some $\gamma \geq 0$; yet the above holds because for values $\mu > \mu_1$ the severity

\(^{14}\) We are coining ‘attained power’ simply to connect it with the familiar idea, for the case of ‘accept H_0’. To avoid confusion, we will drop the term once the general notion of severity is in place. In the case of ‘reject H_0’ severity is $[1 - \text{attained power}]$.

\(^{15}\) The calculations are easily obtained by means of the Standard Normal Distribution table, using the area to the right of $[d(x_0) - (\mu_1 - \mu_0)/\sigma] = (\bar{x} - \mu_1)/\sigma$ since:

$$SEV(\mu \leq \mu_1) = P(Z > [\bar{x} - \mu_1]/\sigma),$$

(where $Z \sim N(0, 1)$).

To apply this to the above example, $\bar{x} = 11.8$, so that $z = (11.8 - 12.2)/.2 = -2.0$. Hence, $P(Z > -2) = .977$, i.e. the standard Normal area to the right of -2.0 is .977.
increases, i.e.
\[
\text{SEV}(\mu \leq \mu_1) > P(d(X) > d(x_0); \mu = \mu_1).^{16}
\]

That is, the power of the test against \(\mu = \mu_1 \) provides a lower bound for severity for the inference or claim \(\mu \leq \mu_1 \).

It is important to emphasize that we are not advocating changing the original null and alternative hypotheses of the given test \(T(\alpha) \); rather we are using the severe testing concept to evaluate which inferences are warranted, in this case of the form \(\mu \leq \mu_1 \)—the kind of scrutiny one might especially need, as Neyman puts it, ‘when we are faced with . . . interpreting the results of an experiment planned and performed by someone else’ (Neyman [1957b], p. 15). It is a meta-statistical check on various inferences one might draw using \(T(\alpha) \) with data \(x_0 \).

4.2 The fallacy of acceptance (i.e., an insignificant difference): Ms Rosy

A ‘fallacy of acceptance’ is often of concern when \(H_0 \) expresses a desirable situation such as, ‘there is a zero increased risk’ of some sort, or ‘a model assumption, e.g., independence, is satisfied’, and an insignificant result is interpreted too readily as positive evidence of no increased risk, or no violation of the given assumption. The test, we might say, gives too rosy an interpretation of the result: it would very probably overlook risk increases, and violations of interest, respectively—even were these present.

Say test \(T(\alpha) \) yields the statistically insignificant result \(d(x_0) = 1.5 \), i.e. \(\bar{x} = 12.3 \), so the test outputs ‘Accept \(H_0 \)’ since the cut-off for rejection was 12.4. Suppose Ms. Rosy makes the following assertion:

‘We may infer that any discrepancy from 12 is absent or no greater than .1.’

That is, she infers \(\mu \leq 12.1 \). Imagine someone critically evaluating this result wished to ask: How severely does \(\mu \leq 12.1 \) pass with \(\bar{x} = 12.3 \) (\(d(x_0) = 1.5 \))?

The answer is: \[
\text{SEV}(\mu \leq 12.1) = P(d(X) > 1.5; \mu > 12.1) = .16.^{17}
\]

Since so insignificant a result would occur 84% of the time even if a discrepancy of .1 from \(H_0 \) exists, we would deny that Ms. Rosy’s interpretation

16 This inequality brings out the relationship between severity and power since for \(d(x_0) < c_\alpha \):
\[
\text{POW}(T(\alpha), \mu = \mu_1) = P(d(X) > c_\alpha; \mu = \mu_1) = P(\bar{Z} > (\mu_1 - \mu_0)/\sigma_x), \text{ (where } Z \sim N(0, 1)).
\]

17 The actual evaluation of severity takes the form:
\[
P(\bar{X} > 12.3; \mu = 12.1) = P(Z > 1) = 0.16 \text{ (where } Z \sim N(0, 1)).
\]
was warranted with severity. The general reasoning here is a straightforward application of SIA:

If a test has a very low probability to detect the existence of a given discrepancy from \(m_0 \), then such a negative result is poor evidence that so small a discrepancy is absent.

However, by dint of the same reasoning, we can find some discrepancy from \(H_0 \) that this statistically insignificant result warrants ruling out—one which very probably would have produced a more significant result than was observed. So even without identifying a discrepancy of importance ahead of time, the severity associated with various inferences can be evaluated. For example the assertion that \(\mu \leq 13 \) severely passes with \(\pi = 12.3 \) \((d(x_0) = 1.5)\) since:

\[
\text{SEV}(\mu \leq 13) = P(d(X) > 1.5; \mu > 13) = 0.9997.
\]

Risk-based policy controversies may often be resolved by such an assessment of negative results (Mayo [1991b]).

4.3 Severity and Power

To illustrate the evaluation of severity and its relationship to power, still keeping to the test output ‘Accept \(H_0 \)’, consider Figure 1, showing the power
curve (solid line), as well as the severity curves (dotted lines) corresponding to three different sample realizations

\[
\bar{x} = 12.1, \quad \bar{x} = 12.39, \quad \bar{x} = 12.3.
\]

In each case we can work with the sample mean \(\bar{x} \) or the corresponding standardized distance statistic \(d(x_0) \).

In the case of \(\bar{x} = 12.39 \), where the observed result \(d(x_0) = 1.95 \) is just inside the critical threshold \(c_a = 1.96 \), the power curve provides a good approximation to the severity of inferring \(\mu \leq \mu' \), where \(\mu' = (\mu_0 + \gamma) \), for different values of the discrepancy \(\gamma \). That is, the power evaluates the worst (i.e., lowest) severity values for any outcome that leads to ‘Accept \(H_0 \)’ with test \(T(\alpha) \). To illustrate reading the graph, the evaluations underneath Figure 1 compare the severity for inferring \(\mu \leq 12.2 \) for the three different samples.

Figure 2 highlights a distinct use for the severity curves in Figure 1: one first chooses a high severity level, say 0.95, and then evaluates the corresponding discrepancy \(\gamma \) that is warranted at this pre-specified level. A handful of low and high benchmarks suffices for avoiding fallacies of acceptance.

\[\text{Figure 2.} \quad \text{Case ‘Accept } H_0 \text{’—Power vs. Severity: the discrepancy excluded with severity .95 for } \mu \leq \mu_1 \text{ corresponding to different outcomes } x_0. \text{ Power curve is the solid line.} \]

For \(d(x_0) = 1.95 \) (\(\bar{x} = 12.39 \)), \(\text{SEV}(\mu \leq 12.72) = .95 \).

For \(d(x_0) = 1.50 \) (\(\bar{x} = 12.30 \)), \(\text{SEV}(\mu \leq 12.63) = .95 \).

For \(d(x_0) = 0.50 \) (\(\bar{x} = 12.10 \)), \(\text{SEV}(\mu \leq 12.43) = .95 \).

\[\text{An Excel program, written by Geoff Cumming, can be used to evaluate such severity curves. This program is available at www.econ.vt.edu/spanos.}\]
To summarize, when the null hypothesis is accepted, the goal is to be able to rule out as small a discrepancy \(\gamma \) from the null as possible. Restricting the analysis to power calculations allows evaluating severity for the case where \(d(x_0) \) just misses the critical threshold \(c_\alpha \)—which, while useful, gives coarse severity assessments by treating all the results \(d(x) \) below \(c_\alpha \) the same. To avoid the ‘too coarse’ charge, we take account of the observed statistically insignificant result \(d(x_0) \), thereby enabling the post-data analysis to rule out values of \(\mu \) even closer to \(\mu_0 \).

5 Fallacy of rejection: statistical vs. substantive significance

Perhaps the most often heard, and best known, fallacy concerns taking a rejection of \(H_0 \) as evidence for a substantive claim: statistical significance is conflated with substantive significance. We need to distinguish two types of concerns.

5.1 Taking a rejection of \(H_0 \) as evidence for a substantive claim or theory

A familiar fallacy stems from reasoning that if a result is statistically significant, say at the 0.001 level, that ‘one’s substantive theory \(T \), which entails the [statistical] alternative \(H_1 \), has received some sort of direct quantitative support of magnitude around .999’ (Meehl [1970], p. 257). Not only does this fallaciously construe an error probability as a degree of confirmation in \(H_0 \), it erroneously conflates the statistical alternative with a substantive theory \(T \). For example, finding a positive discrepancy from 12—which we may imagine is the mean concentration of lead in blood—would not warrant inferring a specific causal explanation. To rely on significance testing to corroborate a substantive scientific theory \(T \), Meehl warns, is to subject \(T \) to only ‘a feeble risk’, and thereby violate Popperian requirements for science. In a similar vein, Imre Lakatos declares:

After reading Meehl ([1967]) [and other psychologists] one wonders whether the function of statistical techniques in the social sciences is not primarily to provide a machinery for producing phony corroborations and thereby a semblance of ‘scientific progress’ where, in fact, there is nothing but an increase in pseudo-intellectual garbage. (Lakatos [1978], pp. 88–9)

The criticism here alludes to (Fisherian) significance tests. In contrast to the Fisherian tests, the N–P framework requires the null and alternative hypotheses to exhaust the parameter space of a (given) statistical model, thereby permitting only the statistical alternative \(H_1 \) to be inferred upon rejecting \(H_0 \), not a substantive theory \(T \) which might entail
Even with its exhaustive space of hypotheses, fallacies of rejection can still enter the N–P paradigm, because finding a statistically significant effect, \(d(x_0) > c_a \), need not be indicative of large or meaningful effect sizes.

5.2 A statistically significant difference from \(H_0 \) may fail to indicate a substantively important magnitude

In the case where \(T(\alpha) \) has led to the rejection of the null hypothesis \(H_0 \) with data \(x_0 \) the inference that ‘passes’ the test is of the form \(\mu > \mu_1 \), where \(\mu_1 = (\mu_0 + \gamma) \), for some \(\gamma \geq 0 \). In other words, a statistically significant result indicates a departure from \(H_0 \) in the direction of the alternative, so severity condition (S-1) is satisfied: the alternative has ‘survived’ the test. Before we can infer, with severity, evidence of a particular positive departure, condition (S-2) demands we consider: How probable would so significant a result be if such a departure were absent?

Applying our general abbreviation, we write ‘the severity with which test \(T(\alpha) \) passes \(\mu_1 > \mu_0 \) with data \(x_0 \)’ as: \(\text{SEV}(\mu > \mu_1) \). It is evaluated by:

\[
\text{SEV}(\mu > \mu_1) := P(d(X) \leq d(x_0); \mu > \mu_1 \text{ false}) = P(d(X) \leq d(x_0); \mu \leq \mu_1).
\]

Because the assertions \(\mu > \mu_1 \) and \(\mu \leq \mu_1 \), constitute a partition of the parameter space of \(\mu \), there is a direct relationship, in test \(T(\alpha) \), between the definitions of severity in the case of Accept and Reject \(H_0 \). That is,

\[
\text{SEV}(\mu > \mu_1) = 1 - \text{SEV}(\mu \leq \mu_1). \tag{20}
\]

As before, severity is evaluated at a point \(\mu_1 \), because for any values of \(\mu \) less than \(\mu_1 \) the severity in test \(T(\alpha) \) increases, i.e.

\[
\text{SEV}(\mu > \mu_1) > P(d(X) \leq d(x_0); \mu = \mu_1).
\]

5.3 Principle for the severity interpretation of a rejection (SIR)

As with acceptances of \(H_0 \), an adequate post-data construal of ‘Reject \(H_0 \)’ calls for a rule showing (a) the discrepancies that are well warranted, and (b) those which are not. The severity interpretation for a rejection of \(H_0 \), for test \(T(\alpha) \) (i.e., \(d(x) > c_0 \)) is this:

\[
\text{SIR: (a) If there is a very low probability of so large a } d(x_0), \text{ if } \mu \leq \mu_1, \text{ then hypothesis } \mu > \mu_1 \text{ passes with high severity, i.e. } \text{SEV}(\mu > \mu_1) \text{ is high.}
\]

\[19\] True, the price for this is that using statistically inferred effects to learn about substantive theories demands linking, piece-meal, statistical inferences to subsequent ones, but this is a distinct issue to be dealt with separately (e.g., Mayo, [2002]).

\[20\] Note that to assert ‘it is not the case that SEV(\(H \)) is high’ does not entail that SEV(\(\neg H \)) is low nor that SEV(not-\(H \)) is high. There may fail to be high severity for both \(H \) and for its denial. Articulating the full logic for SEV is a future project.
(b) If there is a very high probability of obtaining so large a \(d(x_0) \) (even) if \(\mu \leq \mu_1 \), then hypothesis \(\mu > \mu_1 \) passes with low severity, i.e.

\[
\text{SEV}(\mu > \mu_1) \text{ is low}.
\]

Choosing a small significance level \(\alpha \) ensures that the inference: \(\mu > \mu_0 \), passes with high severity whenever we ‘Reject \(H_0 \)’ with \(d(x_0) \).

It is instructive to observe the dramatic contrast between data-specific assessments of a rejection and the usual assessment of the power of test \(T(\alpha) \) at the alternative \(\mu_1 = \mu_0 + \gamma \) as in Figure 3. To illustrate how to read this graph, consider asking questions about the severity for different inferences.

A. First suppose that the outcome is \(\bar{x} = 12.6 \), (i.e., \(d(x_0) = 3.0 \)).

How severely does test \(T(\alpha) \) pass \(\mu_1 > 12.2 \) with this result? The answer is .977, because: \(\text{SEV}(\mu > 12.2) = P(d(X) \leq 3.0; \mu_1 = 12.2) = .977 \).

B. Now consider a different outcome, say, \(\bar{x} = 13 \), (i.e., \(d(x_0) = 5.0 \)).

How severely does test \(T(\alpha) \) pass \(\mu_1 > 12.2 \) with this result? The answer is .9997, because: \(\text{SEV}(\mu > 12.2) = P(d(X) \leq 5.0; \mu_1 = 12.2) = .9997 \).

Figure 3 also illustrates vividly the contrast between the relevant severity calculations (dotted curves) and power (solid line) in the case of ‘reject \(H_0 \)’. If \(d(x) \) has led to reject \(H_0 \), \(d(x_0) > c_\alpha \), the severity for inferring \(\mu > \mu_1 \):

\[
\text{SEV}(\mu > \mu_1) > 1 - \text{POW}(T(\alpha); \mu_1).
\]
That is, one minus the power of the test at \(\mu_1 = \mu_0 + \gamma \) provides a lower bound for the severity for inferring \(\mu > \mu_1 \). It follows that:

The higher the power of the test to detect discrepancy \(\gamma \), the lower the severity for inferring \(\mu > \mu_1 \) on the basis of a rejection of \(H_0 \).

This immediately avoids common fallacies wherein an \(\alpha \) level rejection is taken as more evidence against the null, the higher the power of the test (see Section 5.4). The upshot is this: a statistically significant result with a small \(\alpha \) level indicates, minimally, some discrepancy from \(\mu_0 \) with high severity, \(1 - \alpha \); however, the larger the discrepancy one purports to have found, the less severely one’s inference is warranted.

Notice that in the case of \(\gamma = 0 \), we are back to the prespecified alternative \(\mu > \mu_0 \); and thus, in this limiting case: \(\text{SEV}(\mu > \mu_0) > 1 - \alpha \) (Figure 4).

5.4 Comparing significant results with different sample sizes in \(T(\alpha) \): large \(n \) problem

Whereas high power is desirable when evaluating a failure to reject \(H_0 \) with test \(T(\alpha) \), in interpreting reject \(H_0 \), too high a power is the problem. An asset of the
severity requirement is that it gives a single criterion for properly interpreting both cases.21

Consider the common complaint that an \(\alpha \)-significant result is indicative of different discrepancies when sample sizes differ, and that with large enough sample size, an \(\alpha \)-significant rejection of \(H_0 \) can be very probable, even if the underlying discrepancy from \(\mu_0 \) is substantively trivial. In fact, for any discrepancy \(\gamma \), however small, a large enough sample size yields a high probability (as high as one likes) that the test will yield an \(\alpha \)-significant rejection (for any \(\alpha \) one wishes)—i.e.,

\[
\text{POW}(T(\alpha); \mu_1 = \mu_0 + \gamma) \text{ is high.}
\]

N–P theory does not come with a warning about how the desideratum of high power can yield tests so sensitive that rejecting \(H_0 \) only warrants inferring the presence of a small discrepancy.

On the contrary, statistical significance at a given level is often (fallaciously) taken as more evidence against the null the larger the sample size (\(n \)).22 In fact, it is indicative of less of a discrepancy from the null than if it resulted from a smaller sample size. Utilizing the severity assessment we see at once that an \(\alpha \)-significant difference with \(n_1 \) passes \(\mu > \mu_1 \) less severely than with \(n_2 \) where \(n_1 > n_2 \).

5.5 General testing rules for \(T(\alpha) \), using the severe testing concept

With reference to the one-sided test \(T(\alpha) \), one might find it useful to define two severity rules for a metastatistical scrutiny of the N–P test outcomes: ‘Accept \(H_0 \)’ and ‘Reject \(H_0 \)’, corresponding to (SIA) and (SIR):

For Accept \(H_0 \):
If, with data \(x_0 \), we accept \(H_0 \) (i.e. \(d(x_0) \leq c_\alpha \)), then test \(T(\alpha) \) passes:

\[
(1) \quad \mu \leq \bar{x} + k_\varepsilon \sigma_x \text{ with severity } (1 - \varepsilon), \text{ for any } 0 < \varepsilon < 1, \text{ where } P(d(X) > k_\varepsilon) = \varepsilon.23
\]

21 The ‘large \(n \) problem’ is also the basis for the ‘Jeffreys-Good-Lindley’ paradox brought out by Bayesians: even a highly statistically significant result can, as \(n \) is made sufficiently large, correspond to a high posterior probability accorded to a null hypothesis. (Good, [1983]; Edwards, Lindman, and Savage, [1963]; Lindley, [1957]). Some suggest adjusting the significance level as a function of \(n \); the severity analysis, instead, assesses the discrepancy or ‘effect size’ that is, and is not, indicated by dint of the significant result.

22 Rosenthal and Gaito ([1963]) document this fallacy among psychologists.

23 Equivalently, rule (1) is: test \(T(\alpha) \) passes \(\mu \leq \mu_0 + \gamma \) with severity \((1 - \varepsilon) \), for \(\gamma = (d(x_0) + k_\varepsilon)\sigma_x \).
For Reject H_0:

If, with data x_0, we reject H_0 (i.e. $d(x_0) > c_a$), then $T(\alpha)$ passes:

1. $\mu > x - k_\varepsilon \sigma_x$ with severity $(1 - \varepsilon)$, for any $0 < \varepsilon < 1$.24

Without setting a fixed level, one may apply the severity assessment at a
number of benchmarks, to infer the extent of discrepancies that are and are
not warranted by the particular dataset. In our conception of evidence, if an
inference could only be said to pass a test with low severity, then there fails to be
evidence for that inference (though the converse does not hold, see Note 20). A
N–P tester may retain the usual test reports only supplemented by a statement
of errors poorly probed. That is, knowing what is not warranted with severity
becomes at least as important as knowing what is: it points to the direction of
what may be tried next and of how to improve inquiries.

We emphasize that the data-specificity of the severity evaluation quantifies
the extent of the discrepancy (γ) from the null that is (or is not) indicated by
data x_0, using the sampling distribution of the test statistic $d(X)$ on the basis
of which all N–P error probabilities are derived. This reflects the fundamental
difference between the current post-data inference and existing Bayesian
accounts.

6 The severe testing concept and confidence intervals

A question that is likely to arise, especially in view of (1) and (2) in
Section 5.5 is:

What is the correspondence between inferences severely passed and a
Confidence Interval (CI) estimate?

Given the popularity of CI’s in attempts to replace the dichotomous
‘accept/reject’ with a report indicating ‘effect size’, a brief foray into CI’s
seems needful.

In CI estimation procedures, a statistic is used to set upper or lower
(1-sided) or both (2-sided) bounds. For a parameter, say μ, a $(1 - \alpha)$ CI
estimation procedure leads to estimates of form: $\mu = \bar{X} \pm \varepsilon$.

Different sample realizations x lead to different estimates, but one can ensure,
pre-data, that $(1 - \alpha)100\%$ of the time the true (fixed, but unknown) parameter
value μ, whatever it may be, will be included in the interval formed. Although
critics of N–P tests are at one in favoring CI’s, it is important to realize that
CI’s are still squarely within the error-statistical paradigm. Moreover, they
too are open to classic problems: they require predesignated assignments of a
confidence level, and they are plagued with questions of interpretation.25

24 Equivalently, rule (2) is: test $T(\alpha)$ passes $\mu > \mu_0 + \gamma$ with severity $(1 - \varepsilon)$, for $\gamma = (d(x_0) - k_\varepsilon)\sigma_x$.

25 That is because one cannot assign the degree of confidence as a probability to the observed
interval.
6.1 Dualities between one and two-sided intervals and tests

In fact there is a precise duality relationship between \((1 - \alpha)\) CI’s and N–P tests: the CI contains the parameter values that would not be rejected by the given test at the specified level of significance (Neyman [1937]). It follows that the \((1 - \alpha)\) one-sided interval corresponding to test \(T(\alpha)\) is:

\[\mu > (\bar{X} - c_\alpha \sigma_x). \]

In particular, the 97.5% CI estimator corresponding to test \(T(\alpha)\) is:

\[\mu > (\bar{X} - 1.96\sigma_x). \]

Similarly, the 95% CI for \(\mu\) corresponding to the two-sided test, \(T(0.05)\) is:

\[(\bar{X} - 1.96\sigma_x) < \mu < (\bar{X} + 1.96\sigma_x). \]

A well known fallacy is to construe \((1 - \alpha)\) as the degree of probability to be assigned the particular interval estimate formed, once \(\bar{X}\) is instantiated with \(\bar{x}\). Once the estimate is formed, either the true parameter is or is not contained in it. One can say only that the particular estimate arose from a procedure which, with high probability, \((1 - \alpha)\), would contain the true value of the parameter, whatever it is.\(^{26}\) Bayesian intervals introduce prior degrees of belief to get ‘credibility intervals’, introducing the problem of how to justify the prior from a frequentist, rather than from either a degree of belief or a priori standpoint.

6.2 Avoiding shortcomings of confidence intervals

Although CI’s can be used in this way as surrogates for tests, the result is still too dichotomous to get around fallacies: it is still just a matter of whether a parameter value is inside the interval (in which case we accept it) or outside it (in which case we reject it). Consider how this is avoided by the severe testing concept.

The assertion:

\[\mu > (\bar{x} - c_\alpha \sigma_x) \]

is the observed one-sided \((1 - \alpha)\) interval corresponding to the test \(T(\alpha)\), and indeed, for the particular value \(\mu_1 = (\bar{x} - c_\alpha \sigma_x)\), the severity with which the inference \(\mu \geq \mu_1\) passes is \((1 - \alpha)\). However, this form of inference is of interest only in the case of evaluating severity when \(x_0\) results in

\(^{26}\) Although it is correct that \(p(\bar{X} - c_\alpha \sigma_x] < \mu) = (1 - \alpha)\), this probabilistic assertion no longer holds once we replace the random variable \(\bar{X}\) with its observed value \(\bar{x}\).
'Reject H_0'. In the case where x_0 results in 'Accept H_0', the inference whose severity we wish to evaluate will rather be of the form:

$$\mu \leq (\bar{x} + c_\alpha s_x).$$

Moreover, even in the case of 'Reject H_0', the CI will be importantly different from a severity assessment, although we can only discuss this here in part.

A $(1 - \alpha)$ CI, we said, corresponds to the set of null hypotheses that would not be rejected with an α-level test. But as we saw in discussing severity in the case of 'Accept H_0', the mere fact that x_0 fails to reject a parameter value does not imply that x_0 is evidence for that value. True, \bar{x} is not sufficiently greater than any of the values in the CI to reject them at the α-level, but this does not imply \bar{x} is good evidence for each of the values in the interval: many values in the interval pass test $T(\alpha)$ with very low severity with x_0.

Recall the kind of question we employed severity to answer in interpreting a statistically significant result, say $d(x_0) = 2.0$ (equivalently, $\bar{x} = 12.4$):

Does $\bar{x} = 12.4$ provide good evidence for $\mu > 12.5$?

The answer, one sees in Figure 3, is No, since the severity is only 0.309. However, the CI that would be formed using $d(x_0)$ would be: $\mu > 12$. Since this interval includes 12.5, how can it be said to convey the ‘No’ answer, i.e., that the result is poor evidence for inferring $\mu > 12.5$? All values of the parameter in the CI are treated on a par, as it were. Nor does using the two-sided 95% CI cure this problem.27 By contrast, for each value of μ_1 in the CI, there would be a different answer to the question: how severely does $\mu \geq \mu_1$ pass with x_0? The CI estimation procedure sets out a fixed $(1 - \alpha)$; whereas, the severity analysis naturally leads to a sequence of inferences that are and are not warranted at different severity evaluation levels.

7 Beyond the N–P paradigm: pure significance, and misspecification tests

The concept of severe testing has been put forward elsewhere as a general account of evidence (Mayo [1996], [2004a], [2004b]); it is intended to hold in cases where severity is assessed entirely qualitatively, as in a familiar qualitative assessment of the difficulty of an exam, or quantitatively as in N–P tests—or in cases in between. Even in statistical testing, scrutinizing a N–P test from the severity perspective involves a use of background considerations (e.g., the particular error of interest as well as errors already ruled out in other studies) that is not purely formal; hence, our calling it ‘meta-statistical’. Tests

27 For $\bar{x} = 12.4$ the two-sided observed interval is $(12 < \mu < 12.8)$. Even allowing that one might entertain the inference, $12.5 < \mu < 12.8$, the CI procedure scarcely warns that evidence for this inference is poor. Note that using \leq for these intervals makes no difference.
that have given rise to philosophical controversy will turn out, upon such a scrutiny, to serve poorly for the severity goal. This enables a severity scrutiny to provide a clear rationale for regarding as counterintuitive certain tests even if strictly licensed by N–P principles (e.g., certain mixed tests). Calling attention to the particular error in inference that needs to be probed before a claim is warranted with severity bears direct fruits for the knotty problems of determining which long-run is appropriate for the relevant context—a version of the philosopher’s ‘reference class problem’ (Mayo and Kruse [2001]).

Conversely tests that do not include all the features of N–P tests may acquire a home in the severity paradigm. For example, even though a ‘pure’ (Fisher-type) significance test lacks an explicit alternative, it requires ‘some idea of the type of departure from the null hypothesis which it is required to test’ (Cox and Hinkley [1974], p. 65) which suffices to develop corresponding assessments of its ability to probe such departures (Mayo and Cox [2006]).

Consider the important category of tests to check the validity of statistical assumptions on which formal error probability assessments depend: checks for model validation or misspecification tests. Whereas N–P statistical tests take place within a specified (or assumed) model M, when we put M’s assumptions to the test, we probe outside M, as it were; see Spanos ([1999]).

For example, in validating the model for test $T(\alpha)$, a misspecification test might have as its null hypothesis that the data constitute a realization of a random (IID) sample, and the alternative could cover all the ways these assumptions could fail. One can leave the alternative implicit in this manner, so long as unwarranted inferences are avoided. Rejecting the IID assumption may allow inferring, with severity, that the model is misspecified in some way or other, but it would not allow inferring, with severity, a particular alternative to IID (e.g. the presence of a particular type of dependency, say Markov). In this way, applying the severity criterion pinpoints a common fallacy in M-S testing (an instance of a fallacy of rejection of the type discussed in 5.2—see Mayo and Spanos [2004]). On the other hand, if a model’s assumptions stand up to stringent probing for violations, the model may be accepted (with severity!) as adequate for the purposes of severely probing the original statistical hypotheses.

8. Concluding comments: have we shown severity to be a basic concept in a N–P philosophy of induction?

While practitioners do not see themselves as using N–P rules of behavior, the key concepts of that paradigm—type I and II errors, significance levels, power, confidence levels—are ubiquitous throughout statistical analysis.
Our goal, therefore, has been to trace out an inferential interpretation of tests which is consistent and in keeping with the philosophy of error statistics. Such an interpretation, we argued, would need to (i) avoid the coarseness of the strict model of N–P tests, wherein the same test output results regardless of where in the acceptance or rejection region x_0 lies; (ii) prevent classic fallacies of acceptance and rejection, and (iii) answer the charge that it is too behavioral and insufficiently inferential.

We have offered answers to these challenges that adhere to the key features that set tests from the error probability paradigm apart from alternative accounts: their ability to control and make use of error probabilities of tests. The key was to extend the pre-data error probabilities, significance level and power, to a ‘customized’, post-data assessment of the severity with which specific inferences pass the resulting test. A hypotheses H has severely passed a test to the extent that H would not have passed the test, or passed so well, were H false. The data-specificity of the severity evaluation quantifies the extent of the discrepancy (γ) from the null that is (or is not) indicated rather than quantifying a degree of confirmation accorded a given hypothesis. Since the interpretations are sensitive to the actual outcome, the limitations of just accepting or rejecting hypotheses are avoided. Fallacies of acceptance and rejection have also been explicitly dealt with.

Charge (iii) demands countering allegations that setting error probabilities are relevant only in contexts where we care about how often we can ‘afford’ to be wrong. From the severity perspective, the choice of the probabilities are no longer foreign to an inferential context. Pre-data, the choices for the type I and II errors reflect the goal of ensuring the test is capable of licensing given inferences severely. We set the ‘worst case’ values accordingly: small α ensures, minimally, that ‘Reject H_0’ licenses inferring some discrepancy from H_0; and high power against discrepancy γ ensures that failing to reject H_0 warrants $\mu < \mu_0 + \gamma$. So, while we favor reporting actual severity evaluations, even the predesignated N–P error probabilities attain a new, inferential justification.28

We identified some of Neyman’s articles wherein he hints at such a post-data use of power; although they appear to be isolated cases. John Pratt lamented that: ‘power plays virtually no role at the inference stage, and philosophies of inference in which it figures importantly are futuristic, to say the least.’ (Pratt [1976], p. 781) We hope that the future is now.

28 The challenge in (iii) may include others taken up elsewhere. Most notably, it has been charged the severity criterion conflicts with other post-data inferential criteria, e.g., likelihoods, posterior probabilities (Howson, [1995], [1997]; Achinstein [2003]). Our answer, in a nutshell, is this: the criterion leading to conflict differs from the severity criterion, and thus performs less well for the error statistician’s goals (Mayo [1996], [2003b], [2005]; Mayo and Kruse [2001].)
Egon Pearson often emphasized that both he and Neyman regarded ‘the ideal statistical procedure as one in which preliminary planning and subsequent interpretation were closely linked together—formed part of a single whole’ (see Pearson [1962], p. 396). Critics fail to appreciate how crucial a role this entanglement plays in determining the capacity of the test procedure actually carried out. The post-data severity assessments are still based on error probabilities, but they are evaluated relative to the observed value of the test statistic. Admittedly, the N–P theory fails to articulate the principles by which to arrive at a N–P philosophy of induction. That is what the severe testing concept achieves. Viewing N–P tests from the severe testing perspective, we see that in scientific contexts the real value of being able to control error probabilities at small values is not the desire to have a good track record in the long run—although such a long-run justification is still available (and in several contexts may be perfectly apt). It is, rather, because of how this lets us severely probe, and thereby understand correctly, the process underlying the data now under consideration.

Deborah G. Mayo
Virginia Tech
Department of Philosophy
Blacksburg, VA 24061
USA
mayod@vt.edu
and
Aris Spanos
Virginia Tech
Department of Economics,
Blacksburg VA 2406
USA
aris@vt.edu

References

Musgrave, A. [1999]: Essays in Realism and Rationalism, Atlanta, GA: Rodopi.

