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We have authored or co-authored a
series of books on the topic
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Obligations on processing personal
information

- There are many obligations on the processing of personal health information
(PHI), including the requirement to obtain data subject consent /
authorization

- The consent often needs to be specific to a particular purpose and the PHI
cannot be used for a different purpose unless further consent is obtained
Use of personal data for the consented purpose is deemed to be a primary
purpose

- The scope of how personal data can be used based on a specific consent
can vary by jurisdiction, for example, an organization can make a legitimate
interest argument

- There are some exceptions to use and disclosure of PHI without consent,
such as for reporting communicable disease, for example
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Obligations on processing personal
information

. Otherwise, the use and disclosure of personal data would
be for a secondary purpose, for which consent was not
obtained and there is no exception

- In general, if data is rendered to be non-identifiable (i.e.,
de-identified) then no consent is required

- De-identified information is not considered to be PHI; it is
not considered to be personal information and therefore
can often fall outside privacy statutes, or can be
processed with fewer obligations
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Primary purposes

. Purposes related to the provision of care are considered
to be primary purposes; this includes using and disclosing
data by/to the individuals involved in the circle of care

. Other purposes such as billing and processing insurance

payments are also often considered to be primary
purposes

- What is a primary purpose is a legal question, however,
and if there is ambiguity then reference to relevant
legislation is advised / legal advice should be sought
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Secondary purposes

- Secondary purposes include research and public health

. Also, obvious data uses, such as building models for
marketing purposes are secondary purposes

- In general, testing software applications are increasingly
being seen as secondary purposes as well

- Open data, unless explicitly stated in the consent when
the data was collected, would be considered a form of
secondary processing as well
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The different states of data

|dentified Pseudonymous Strongly Anonymous

Pseudonymous
Data Data Data Data

Anonymisation
Threshold
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Each data state has certain obligations

GDPR obligation Type of data

10

Identified Pseudonymised Strongly pseudonymised Anonymised
(basic)
1. Provide notice to data subject Hequired Hequired Required Mot required
2. Legal basis for processing (legitimate Hequired Stronger case for Much stronger case Mot required
interests, consent) legitimate interests
3. Data subject nghts (access, portability, Hequired Hequired Mot required MNot required
rectification)
4. Give right to erasure/right to be Hequired Hequired May not be required Mot required
forgotten
9. Basis for cross-border transfers Hequired Hequired Required Mot required
6. Data protection by design Hequired Partialy met Strengthens the ability to Mot required
meet this obligation
7. Data secunty Hequired Partially met Strengthens the ability to Mot required
meet this obligation
8. Data breach notification Likely to be Less likely to be Strengthens the case that Mot required
required required notification is not required
9. Data retention limitations Hequired Hequired Required Mot required
10. Documentation/recordkeeping Hequired Required Required Mot required
obligations
11. Vendor/sub-processor management Hequired Hequired Required Mot required
M. Hintze and K. El Emam, “Comparing the benefits of pseudonymisation and anonymisation under the GDPR,” J. Data

Prot. Priv., vol. 2, no. 1, pp. 145-158, Dec. 2018.
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De-identification of PHI

- The use and disclosure of data for secondary purposes can be

enabled by de-identification

- This Iincludes data transfers across jurisdictions
- One of the main objectives of de-identification is to protect

against identity disclosure

- |t Is a risk management exercise in that it is intended to ensure

that the risk of identity disclosure is very small

- In general, the act of de-identification does not require

additional consent; the reasoning will depend on the statute
that is applicable
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Obligations on processing de-
identified PHI

. While the obligations on de-identified PHI are
reduced, they are not completely zero

. There Is Increasingly a prohibition against re-
identification

- Risk Is managed by data transformations and
additional controls — it iIs necessary to ensure that the

controls travel with the data
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There Is a consistent approach in existing
standards and guidelines

Signapore Ontario
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clinical data for medicinal products for human use Information in Accordance with the Health

Insurance Portability and Accountability Act
(HIPAA) Privacy Rule

managing data
protection risk

November 26, 2012

1. Introduction and purpose

OCR gratefully acknowledges the significant contributions made
to the development of this guidance by Bradiey Malin, PAD,

De-identification Guidelines
for Structured Data

through both organizing the 2010 workshop and synthesizing the
concepts and perspectives in the document itself. OCR also
thanks the 2010 workshop panelists for generously providing their
expertise and recommendations fo the Department
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INDIRECT IDENTIFIERS

DIRECT IDENTIFIERS

= Name = Postal code / ZIP code
* Email address " Age / DoB
= SIN / SSN = Race / ethnicity / language
= Biomedtrics = |[ncome
* Health insurance number = Visible characteristics
= Full residential address (e.g., mobility devices)
= Dates of important events
(e.g., marriage, death
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Basic definitions — identity disclosure is
when a person’s identity is assigned to a
record

Quasi-identifiers

——

D Sex Year of Birth NDC

- Male 1975 009-0031

B | Male 1988 0023-3670
h> Male 1972 0074-5182
w | 2 Female 1993 0078-0379
‘ < s Female 1989 65862-403
Male 1991 55714-4446
Male 1992 55714-4402
Female 1987 55566-2110

Male 1971 55289-324
Ja Female 1996 54868-6348
Male 1980 53808-0540

1 5 Electronic Health Information Laboratory, University of Ottawa and Children’s Hospital of Eastern Ontario Research Institute



Basic definitions — generalization means that
more than one record can match a person

Sex Year of Birth NDC
Male 1970-1979 009-0031
Male 1980-1989 0023-3670
Male 1970-1979 0074-5182
Female 1990-1999 0078-0379
Female 1980-1989 65862-403
Male 1990-1999 55714-4446
Male 1990-1999 55714-4402
Female 1980-1989 55566-2110
Male 1970-1979 55289-324
Ja Female 1990-1999 54868-6348
Male 1980-1989 53808-0540

1 6 Electronic Health Information Laboratory, University of Ottawa and Children’s Hospital of Eastern Ontario Research Institute



Attacks can be in two directions — population
to sample attack

Sex Year of Birth NDC
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Male 1970-1979 009-0031
Male 1980-1989 0023-3670
Male 1970-1979 0074-5182
Female 1990-1999 0078-0379
Female 1980-1989 65862-403
Male 1990-1999 55714-4446
Male 1990-1999 55714-4402
Female 1980-1989 55566-2110
Male 1970-1979 55289-324
Female 1990-1999 54868-6348
Male 1980-1989 53808-0540 — \—
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Attacks can be Iin two directions — sample to

population attack

Sex Year of Birth \'|D]@:
Male 1970-1979 009-0031
Male 1980-1989 0023-3670
Male 1970-1979 0074-5182
Female 1990-1999 0078-0379
Female 1980-1989 65862-403
Male 1990-1999 55714-4446
Male 1990-1999 55714-4402
Female 1980-1989 55566-2110
Male 1970-1979 55289-324
Female 1990-1999 54868-6348
Male 1980-1989 53808-0540
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Risk Is measured by the group size

Sex Year of Birth NDC Group Size Risk
Male 1975 009-0031 1 1
Male 1988 0023-3670 1 1
Male 1972 0074-5182 1 1
Female 1993 0078-0379 1 1
< s Female 1989 65862-403 1 1
Male 1991 55714-4446 1 1
Male 1992 55714-4402 1 1
Female 1987 55566-2110 1 1
Male 1971 55289-324 1 1
P fa| Female 1996 54868-6348 1 1
Male 1980 53808-0540 1 1
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bigger, so the risk decreases

When we generalize the group size gets

S Sex Decade of Birth NDC Group Size
N~ Male 1970-1979 009-0031 3 0.33
/ Y Male 1980-1989 0023-3670 2 0.5
h\) Male 1970-1979 0074-5182 3 0.33
‘# | 2 Female 1990-1999 0078-0379 2 0.5
4 < s Female 1980-1989 65862-403 2 0.5
Male 1990-1999  55714-4446 2 0.5
Male 1990-1999  55714-4402 2 0.5
Female 1980-1989  55566-2110 2 0.5
Male 1970-1979 55289-324 3 0.33
oa Female 1990-1999  54868-6348 2 0.5
Male 1980-1989  53808-0540 2 0.5

20 Electronic Health Information Laboratory, University of Ottawa and Children’s Hospital of Eastern Ontario Research Institute
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But it is actually the population group size
that matters

Sex Decade of Birth NDC Group Size Risk
Male 1970-1979 009-0031 3
Male 1980-1989 0023-3670 2
Male 1970-1979 0074-5182 3

Female 1990-1999 0078-0379 2

Female 1980-1989 65862-403 2 0.1
Male 1990-1999 55714-4446 2
Male 1990-1999 55714-4402 2

Female 1980-1989 55566-2110 2 0.1
Male 1970-1979 55289-324 3

Female 1990-1999 54868-6348 2
Male 1980-1989 53808-0540 2
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ldentifiability spectrum and risk
thresholds

Identifiability
Threshold

= =

Identifiable O @ Not Identifiable
Data Data
(Probability=1) (Probability=0)
Personal Not Personal
Information Information
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Pseudonymous data on the spectrum

pseudonymous data \

Identifiable .
Data

(Probability=1)

Personal
Information
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De-identified data on the spectrum

Identifiability
Threshold de-identified data

—
D

= =

Identifiable O @ Not Identifiable
Data Data
(Probability=1) (Probability=9)
Personal Not Personal
Information Information
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Privacy-Utility Trade-off

max
privacy

ideal
situation

acceptable
tradeoff

PRIVACY PROTECTION
|

minimal _ :
rivac
’ Y I I | I I
minimal utility max utility

DATA UTILITY

Electronic Health Information Laboratory, University of Ottawa and Children’s Hospital of Eastern Ontario Research Institute



26

A common approach that has worked well In
practice is risk-based anonymization

Data

Transformations

* (eneralization
* Suppressior
» Addition of noise

* Microaggregation

Security controls
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Claims of successful re-identification attacks, while
debatable, still have created a negative narrative

around traditional anonymization methods

Ehe New Pork Times gual‘ dian
: 'Anonymised’ data can never be totall
Your Data Were ‘Anonymized’? These HDOHYT‘HOUS, says study y

Scientists Can Still Identify You
Findings say it is impossible for researchers to fully protect real

Computer scientists have developed an algorithm that can identities in datasets
pick out almost any American in databases supposedly
stripped of personal information.

You're very easy to track

e down, even when your
Twelve Million Phones, data has been
One Dataset, Zero Privacy anonymized
By StuartA. Th:mpsli'”;”: Charlie Warzel A new study shows you can be easily re-identified from almost any

database, even when your personal details have been stripped out.

by Charlotte Jee Jul 23,2019

'Anonymized' Data Can Never Be Totally Anonymous, says
Study

By The Guardian m

Online Profiling and Invasion of Privacy: The
Myth of Anonymization

022072013 12:23 pm ET | Updated Apr 22, 2013
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Commonly mentioned privacy enhancing
technologies

RISK-BASED DE-IDENTIFICATION

Using methods like k-anonymity to measure re-identification risk, and data
transformations are combined with controls to manage overall risk.

SYNTHETIC DATA GENERATION

Models are built from data, and these are used to generate new datasets
that retain the statistical patterns.

28

FEDERATED ANALYSIS/SECURE MULTIPARTY COMPUTATION

0 3 Computations are distributed among multiple parties, either as data sources
or as computing nodes, or both.

DIFFERENTIAL PRIVACY

U 4 Interactive system that adds noise to the results of interactive queries to
manage re-identification risk.
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The Synthesis Process

Source Data

I (new )

Apply MDdEI 1 1 1 1 1 1 1
. CcoulA AGECAT AGELE70 WHITE MALE BMI
Synthetic Data
y United States 2 1 1 1 33.75155
United States 2 1 1 0 39.24707
" : : United States 1 1 1 0 26.5625
Additional Clarifications United Statec A ! 1 1 40 58772
« The source datasets can be as small as 100 or 150 : '
. ) : United 5tates 5 0 0 1 24.42046
patients. We have developed generative modeling _
. . United States 5 0 1 0 19.07124
techniques that will work for small datasets. United Stat ; X R BT
» The source datasets can be very large — then it becomes un!tEd StEtES A 5 5 ) 25'45939
a function of compute capacity that is available. nited states '

» Itis not necessary to know how the synthetic data will be
analyzed to build the generative models. The generative
models capture many of the patterns in the source data.
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