Scientific Publications Database

Article Title: CT imaging of solid renal masses: pitfalls and solutions
Authors: Krishna, S.; Murray, C. A.; McInnes, M. D.; Chatelain, R.; Siddaiah, M.; Al-Dandan, O.; Narayanasamy, S.; Schieda, N.
Journal: CLINICAL RADIOLOGY Volume 72 Issue 9
Date of Publication:2017
Abstract:
Computed tomography (CT) remains the first-line imaging test for the characterisation of renal masses; however, CT has inherent limitations, which if unrecognised, may result in errors. The purpose of this manuscript is to present 10 pitfalls in the CT evaluation of solid renal masses. Thin section non-contrast enhanced CT (NECT) is required to confirm the presence of macroscopic fat and diagnosis of angiomyolipoma (AML). Renal cell carcinoma (RCC) can mimic renal cysts at NECT when measuring <20 HU, but are usually heterogeneous with irregular margins. Haemorrhagic cysts (HC) may simulate solid lesions at NECT; however, a homogeneous lesion measuring >70 HU is essentially diagnostic of HC. Homogeneous lesions measuring 20-70 HU at NECT or >20 HU at contrast-enhanced (CE) CT, are indeterminate, requiring further evaluation. Dual-energy CT (DECT) can accurately characterise these lesions at baseline through virtual NECT, iodine overlay images, or quantitative iodine concentration analysis without recalling the patient. A minority of hypo-enhancing renLal masses (most commonly papillary RCC) show indeterminate or absent enhancement at multiphase CT. Follow-up, CE ultrasound or magnetic resonance imaging (MRI) is required to further characterise these lesions. Small (<3 cm) endophytic cysts commonly show pseudo-enhancement, which may simulate RCC; this can be overcome with DECT or MRI. In small (<4 cm) solid renal masses, 20% of lesions are benign, chiefly AML without visible fat or oncocytoma. Low-dose techniques may simulate lesion heterogeneity due to increased image noise, which can be ameliorated through the appropriate use of iterative reconstruction algorithms. (C) 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.