Selected Publications

Kolodziejczyk, S.M., Wang, L., Balaszi, K., DeRepentigny, Y., Kothary, R., and Megeney, L.A. (1999). MEF2 activity is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Curr. Biol. 9, 1203-1206.  

Fernando, P.S., Kelly, J.F., Balazsi, K., Slack, R.S., and Megeney, L.A. (2002). Caspase 3 activity is required for skeletal muscle differentiation.  Proc.Natl.Acad.Sci.USA. 99. 11025-11030.  

Larsen, B.D., Rampalli, S., Burns, L., Dilworth, F.J. and Megeney, L.A. (2010).  Caspase 3/Caspase activated DNase promote cell differentiation by inducing DNA strand breaks.  Proc.Nat.Acad.Sci.USA. 107, 4230-4235.   

Lee, R.E., Brunette ,S., Puente, L.G. and Megeney, L.A. (2010). Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc.Natl.Acad.Sci.USA.107, 13348-13353.  

Putinski, C., Abdul-Ghani, M., Stiles, R., Brunette, S., Dick, S.A., Fernando, P.S., and Megeney, L.A. (2013). Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy. Proc.Natl.Acad.Sci.USA., 110, E4079-4087.  

Dick, S.A. Chang, N.C., Dumont, N.A., Bell, R., Putinski, C., Kawabe, Y., Litchfield, D.W., Rudnicki, M.A. and Megeney, L.A. (2015). Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells. Proc.Natl.Acad.Sci.USA., 112, E5246-5252.  

Al-Khalaf, M., Blake, L., Larsen, B.D., Bell, R.A., Brunette, S., Parks, R.J., Rudnicki, M.A., McKinnon, P.J., Dilworth, F.J. and Megeney, L.A. (2016). Temporal activation of XRCC-1 mediated DNA repair is essential for muscle differentiation. Cell Discovery, 2, 15041.

Abdul-Ghani, M., Suen, C., Jiang, B., Deng, Y., Putinski, C., Brunette, S., Weldrick, J., Burgon, P., Fernando, P., Lee, T.T., Flynn, P., Leenen, F., Burgon, P.G., Stewart, D.J. and Megeney, L.A. (2017).  Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart.  Cell Research, 27, 1195-2015.

Shrestha, A., Brunette, S., Stanford, W.L. and Megeney, L.A. (2019). The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discovery, 5, 6.

Larsen, B.D., Benada, J., Yung, P.Y.K., Bell, R.A.V., Pappas, G., Urban, V., Ahlskog, J.K., Kuo, T.T., Janscak, P., Megeney, L.A., Elsasser, S., Bartek, J., and Sørensen, C.S. (2022).  Cancer cells utilize self-inflicted DNA breaks to evade growth limits imposed by genotoxic stress.  Science, 376,  476-483.

Bell, R.A.V., Al-Khalaf, M.H., Brunette, S., Alsowaida, D., Chu, A., Bandukwala, H., Dechant, G., Apostolova, G., Dilworth, F.J., and Megeney, L.A.  (2022). Chromatin reorganization during myoblast differentiation involves the caspase-dependent removal of SATB2.  Cells, 11, 966, 1-22.

Brunette, S., Sharma, A., Bell, R.A.V., Puente, L., and Megeney, L.A. (2023). Caspase 3 exhibits a yeast metacaspase proteostasis function that protects mitochondria from toxic TDP43 aggregates. Microbial Cell, 10, 157-169.

Benada, J., Alsowaida, D., Megeney, L.A.* and Sørensen, C.S.* (2023). Self-inflicted DNA breaks in differentiation and cancer. Trends in Cell Biology, 33, 850-859. *co-corresponding authors.

Alsowaida, D., Larsen, B.D., Hachmer, S., Azimi, M., Arezza, E., Brunette, S., Tur, S., Palii, C.G., Albraidy, B., Sorensen, C.S., Brand, M., Dilworth, F.J., and Megeney, L.A. (2024).  Caspase-Activated DNase localizes to cancer causing translocation breakpoints during cell differentiation. bioRxiv, https://doi.org/10.1101/2024.09.24.614809.